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Abstract. Nop-shadows Analysis (NSA) is an efficient static typestate
analysis, which can be used to eliminate unnecessary monitoring instru-
mentations for runtime monitors. In this paper, we propose two opti-
mizations to improve the precision of NSA. Both of the optimizations
filter interferential configurations when determining whether a monitor-
ing instrumentation is necessary. We have implemented our optimization
methods in Clara and conducted extensive experiments on the DaCapo
benchmark. The experimental results indicate that the optimized NSA
can further remove unnecessary instrumentations after the original NSA
in more than half of the cases, without a significant overhead. In addi-
tion, for two cases, all the instrumentations are removed, which implies
the program is proved to satisfy the typestate property.

Keywords: Typestate Analysis, Runtime Monitoring, Static Analysis,
Nop-shadows Analysis

1 Introduction

A typestate property [23] describes the acceptable operations on a single ob-
ject or a group of inter-related objects, according to the current state (i.e., the
typestate) of the object or the group [7,10]. For example, usually, programmers
cannot call the method write until the method open is called on a same File
object. Lots of large-scale software system errors are caused by the violations of
typestate properties. What is worse, it is very difficult and time-consuming to
find out and fix these errors [6, 22]. The static analysis of a program with respect
to a typestate property is generally undecidable. The existing static typestate
checking tools [3,19] suffer from the scalability and the false-alarm problems.
Dynamic typestate checking methods complement the static methods with run-
time monitoring to improve the scalability and the accuracy of the analysis, but
sacrifice the completeness.

Usually, dynamic typestate analysis approaches, such as runtime verification
[5,11,15,16], automatically convert typestate properties into runtime monitors
that can detect the property violations at runtime. Implementing runtime mon-
itors needs to instrument the monitored programs. The instrumentation can
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be done manually or automatically based on existing techniques, such as AOP
[14]. However, the programs instrumented with runtime monitors usually con-
tain many redundant instrumentations, which result in a significant monitoring
overhead. Therefore, some approaches [6, 12] exploit static analysis information
to remove provable unnecessary instrumentations for reducing the overhead of
runtime monitoring. These methods are often called hybrid typestate analysis.

Theoretically, hybrid typestate analysis is equivalent to the static analysis
of typestate properties. If all the instrumentations of a runtime monitor can be
removed, the program is proved to satisfy the typestate property. Nop-shadows
analysis (NSA) [6, 7] is one of the existing hybrid analysis methods. NSA is imple-
mented in Clara [1] to optimize the runtime monitoring of large-scale Java pro-
grams. NSA uses intra-procedural flow-sensitive and partially context-sensitive
data-flow analysis to identify the redundant instrumentations generated for mon-
itors.

Although NSA is effective [6,7], there are some cases in which unnecessary
instrumentations still remain after NSA. One of the main reasons is that NSA
is only an intra-procedural flow-sensitive static analysis. The overly conservative
approximations of inter-procedural cases in NSA reduce the accuracy of the
analysis. In this paper, we propose two optimizations to improve the precision
of NSA. Both of the optimizations can filter interferential configurations when
determining whether a monitoring instrumentation is necessary. An interferential
configuration refers to the configuration that lowers the precision of identifying
“nop shadows” in NSA. One optimization identifies changeless configurations
produced by the backward data-flow analysis of NSA; the other one utilizes
local object information to refine the iterations of data-flow analysis. Using the
two optimizations, more unnecessary instrumentations can be removed.

To evaluate our optimizations, we have integrated our optimizations into
Clara, and applied them to the DaCapo benchmark suite [4]. In more than half
of the cases, the optimized NSA can further remove unnecessary instrumenta-
tions after the original NSA. In two cases, we get a perfect result, i.e., all the
monitoring instrumentations are removed, entirely obviating the need for moni-
toring at runtime.

To summarize, our paper has the following contributions:

- Propose two optimizations for NSA to improve the precision of the analysis.
Both of the optimizations filter interferential configurations by identifying
changeless configurations and exploiting local object information.

- Propose and implement an approximate, but sound, intra-procedural flow-
sensitive algorithm to determine whether a variable points to a local object.

- Implement the two optimizations and integrate them into Clara.

- Conduct extensive experiments on the DaCapo benchmark suite to show the
effectiveness of our optimizations.

The remainder of this paper is organized as follows. We begin with an
overview of NSA in Section 2. In Section 3, we give two motivating examples to
illustrate the two different optimization methods, respectively. Section 4 formu-
lates the details of our proposed optimizations. Our experiments, described in



Section 5, justify that our optimizations are effective in the majority of cases.
Section 6 describes the related work and the paper is concluded in Section 7.

2 Nop-shadows Analysis

As in the literature [6,7,17], we also use the term “shadow” to represent an
instrumentation point created for runtime monitoring. NSA is a static typestate
analysis method proposed and implemented in the Clara framework [6], which
extends tracematch [2] with static analysis to remove “nop shadows”. Here a
“nop shadow” means that the shadow does not influence the results of runtime
monitoring, i.e., it can neither trigger nor suppress a property violation [6, 7].

Clara consists of three static analysis stages, in which NSA is the most expen-
sive and precise one. Given a typestate property (usually a finite-state machine
(FSM)) and an instrumented Java program, NSA uses an intra-procedural data-
flow analysis to check whether a shadow in a method of the program can be
removed. The basic idea of NSA is to compute the reachable states of each
statement in a program according to the semantics of the program and the mon-
itored typestate property. Given an FSM typestate property M and its state set
S, for each statement st, there are two types of reachable states: source(st) and
futures(st), which are calculated respectively by a forward data-flow analysis
(forward analysis) and a backward data-flow analysis (backward analysis). The
source set source(st) C S contains all the states that can be reached before ex-
ecuting st from the beginning of the program; futures(st) C P(S) is the future
set, and each element of futures(st) contains the states from which the remain-
der program execution after st can reach a final state (usually the error state) of
M. Therefore, for a given shadow s, which is usually a method call statement in
the program, NSA identifies s as a “nop shadow” if the execution of the shadow
has no impact on the monitoring result, which can be formalized by following
two conditions:

— target(s) N F = (), where target(s) = {q2 | 31 € sources(s) e g2 = 6(q1,5)}
is the resulting state set after executing s, d(¢1, s) is the resulting state after
executing s from the state ¢; according to the FSM property M, and F is
the final state set of M. This condition means the execution of s does not
directly lead to an error state.

— Vg1 € source(s),VQ € futures(s) e q1 € Q < 5(q1,s8) € Q. It means the
execution of s does not influence whether or not a final state will be reached.

The shadow s can be removed if both conditions are valid.

Figure 1 gives an example for NSA. The left part is an FSM for “Connec-
tionClosed” [7] typestate property, which requires the “write” operation should
not be called after a connection is closed. The right part displays a program
annotated with the state information of each statement. The elements in the
source set and the futures set of each statement are next to the downward and
upward arrows, respectively. For instance, for the shadow sz at line 3, we have:

source(ss) = {0}



target(ss) = {1}
futures(sz) =0

futures(ss) = 0 means that there is no state from which the property state
machine can reach the final state via the execution after line 3. According to the
preceding two conditions, s3 is a “nop shadow” that can be removed.

1 public static void m(String args[]) {

t, writ close write - 4
reconnegs, wnte 2 Connection ¢l = new Connection(args[0]);
write m ..................... o 1o
3 cl.close();
N 1|0
o \ e 4 cl.reconnect ();
reconnect close " e 0 |{1,2}
reconnect 5 cl.write(args[1]);
“ConnectionClosed” typestate property T 0 112}
6} L\ /

Fig. 1: An example for Nop-shadows Analysis

After removing a “nop shadow”, the source(st) and futures(st) of each
statement will be calculated again, until no “nop shadow” exists. If there is no
shadow after NSA, the program is proved to satisfy the typestate property. For
example, all the shadows of the program in Figure 1 will be removed finally. For
the inter-procedural cases, the method calls are soundly approximated by using
the transitive closure of the shadows in the called methods.

3 DMotivating Examples

We motivate our optimizations of NSA through two examples. We also use the
“ConnectionClosed” property in Figure 1 as the typestate property. Figure 2
shows an example that invokes the “close” and “write” methods of the class
Connection. The shadows at line 7 and 10 violate the typestate property, because
they can both drive the state machine into the final state. The “close” operation
at line 8 is between these two violating shadows. Hence, from the semantics of
the program and the property FSM (c.f. Figure 1), the runtime monitor does
not need to monitor the shadow at line 8. Whereas, the original NSA cannot
identify the shadow at line 8 as a “nop shadow” at compile-time. The reason is
explained as follows.

For the sake of brevity, Figure 2 only shows partial critical state information
calculated by the forward and backward analysis. In order to distinguish the
typestates of multiple different objects or groups of related objects, the data-
flow analysis of NSA propagates “configurations” instead of only state sets [7].
A configuration specifies the state information of some specific objects. A con-
figuration C = (Q,b) is composed by a state set @ and a variable binding b.



1 public static void m(String args[]) {

2 Connection ¢l = new Connection(args[0]);

3 Connection ¢2 = new Connection(args[0]);

4 cl.close(); A

5 c2.close();

6 cl.write(args[1]);

7 c2.write(args[1]);

eeecssscsscsscsscsscsscsscns S8 = ({2}’ C: {02})

8 c2.close();
........................... Tg:({l},C:{Oz}) Fg:({z}’c¢ {01})

9 cl.write(args[1]);
........................... Fo=({2},7)

10 c2.write(args[1]);

11}

Fig. 2: The example for motivating the first optimization

The variable binding specifies the static objects [9] which represent the concrete
runtime objects. Actually, for a shadow s, it also has a variable binding [8] spec-
ifying the objects whose typestates can be changed by s. Two variable bindings
are compatible if they can be bound to a same static object or a same group
of related static objects. A configuration and a shadow are compatible if their
variable bindings are compatible. For a statement st associated with a configu-
ration (@, b), in forward analysis, the elements in set @) represent all the possible
states which the static objects specified by the variable binding b can reach just
before st; in backward analysis, they are the states from which the static objects
specified by b can reach a final state via the execution after st. For example, the
configuration Sg in Figure 2 represents that the static object Oy can reach state
2 before executing line 8. The configuration Fj5 in Figure 3 represents that the
static object O can reach the final state from state 0 or 1 via the execution after
line 3.

Providing that the program creates the compile-time static objects O; and
O, at line 2 and line 3, respectively. The variable binding of the shadow at line
8 is C' = {02}, and the shadow at line 8 changes the configuration from Sg =
({2},C ={02}) to Ty = ({1},C = {O2}) in the forward analysis, with respect
to the typestate property. Fys = ({2},C # {O:}) associated to the shadow at
line 8 is one of the resulting configurations produced by the backward analysis
starting at line 9, which means the typestate of the object does not change if
the object is not O;. The variable bindings of Sg and Fy are both compatible to
that of the shadow at line 8. According to the “nop shadow” conditions, because
the states of the state transition caused by the shadow at line 8, i.e., state 2 in
Sg and state 1 in Ty, are not both contained in the state set {2} of Fg, NSA fails
to identify this shadow as a “nop shadow”.

Actually, the configuration Fg is induced by the “final shadow”? at line 9,
in which the variable ¢; is totally unrelated to the variable c; at line 8, i.e.,

3 “final shadow”, which can drive the FSM of the property into a final state [6].



they must not alias. Hence, in principle, we should filter this type of interferen-
tial configurations generated from backward analysis when checking whether a
shadow can be removed. Based on this insight, our optimized NSA can success-
fully identify the shadows, similar to the shadow at line 8, as “nop shadows”.

Figure 3 shows another example to motivate the second optimization ap-
proach. Different from the former one, the typestate property “Connection-
Closed” is not violated by the method m. Therefore, all the shadows in method
m can be safely removed. However, by using the original NSA, all the shadows
will remain.

1 public static void m(String args[]) {
2 Connection cl = new Connection(args[0]);
e §,=(0,T) $22=(1,C={0}) |F2=({1.2}, C={O}) |F2>= ({0,1,2}, C = {O})
3 cl.write(args[1]); A \
ceessscessccsssccnnns 513:(0’ C: {O})/ S23:(2’ C: {O}) F13:({2},T)
4 cl.close();
cerneeseenenneneen | 8 = (1, C = {0}) [$2, = (1, C = {O})

YFas=(10,1,2}, C = {O})

F2e=({1,2},C={0})
5%

Fig. 3: The example for motivating the second optimization

The problem is mainly resulted by the approximated inter-procedure analysis.
Figure 3 shows partial forward and backward analysis results that are next to
the two downward arrows and two upward arrows, respectively. Because there
may be several consecutive method calls to a method in a program, for ensuring
the soundness, the forward analysis needs to propagate the configuration at the
end of a method to the entry of the method until a fixed-point is reached. For
example, Sy4 is propagated to the entry configuration Sso of the next iteration
(indicated by the red dotted line). The propagation also happens in backward
analysis. After reaching the fixed-point, the shadow at line 3 can produce the
configuration Ss3, which contains an error state. Thus, this shadow cannot be
removed. In addition, the shadow at line 4 changes the configuration Si3 to S14,
but state 0 in S13 and state 1 in S14 are not both contained in the state set {1,
2} of the configuration Fhy. Therefore, the shadow at line 4 cannot be removed
either.

After carefully analyzing the example program, we find the reason is that the
configuration propagation disregards the local object information. In this paper,
we call a static object, which is created by a “new” statement within the method
currently being analyzed, a local object. For example, the static object O created
by the statement at line 2 is a local object. Obviously, at runtime, each local ob-
ject will be assigned with a different runtime object each time when the method
is invoked and the “new” statement is executed. Therefore, for the example in
Figure 3, the configuration Ss2 should not have a same variable binding as S14.
If we have the local object information of the example program, i.e., no need to
do the second forward iteration and the second backward iteration, then both
of the “nop shadows” at line 3 and line 4 can be removed. Based on the obser-



vations motivated by this example, we optimize NSA by exploiting local object
information.

For simplicity, the motivating examples do not contain complex program-
ming language features, such as recursion, exception handling and aliasing. In
Section 4, we will give the details of our optimization methods that can be ap-
plied in general.

4 Optimization Methods

This section presents the details of our optimization methods for filtering in-
terferential configurations when checking whether a shadow is a “nop shadow”.
The first subsection explains how to identify changeless configurations generated
from backward analysis. The second subsection proposes an algorithm for deter-
mining whether a static object is a local object, and describes how to propagate
configurations along the inter-procedural control-flow of a analyzed method. The
two optimizations are complementary to each other. They separately address dif-
ferent issues that can potentially lead NSA to lose precision. Therefore, these

two optimizations can be combined together to further improve the accuracy of
NSA.

4.1 Identifying Changeless Configurations

How can we identify changeless configurations, like Fy in Figure 2, from the re-
sults produced by backward analysis? Basically, if the states of a configuration
have never been through a state transition during backward analysis, then we
consider the configuration as a changeless configuration. For a changeless con-
figuration C; = (Q;,b;) that is induced by a “final shadow” s, and associated
to a shadow s;, even if C; is compatible with s;, there is no need to consider
C; when checking whether the shadow s; is a “nop shadow”. The reason is: the
states in set @; of the objects specified by the variable bindings b; will definitely
not change anymore before program execution passes the “final shadow” sy, and
the execution of the “final shadow” sy would not trigger an error because of the
incompatibility of s; and Cj.

Hence, we extend the original configuration tuple from (@, b) to (Q,b,T),
where @) is the state set, b is the variable bindings and 7" indicates whether
the states of this configuration have ever been through a state transition be-
fore. Therefore, we need to record the information of T' during the configuration
transitions in backward analysis. The new configuration transition algorithm is
displayed in Algorithm 1.

The algorithm is basically the same as that in [6]. The different parts are
enclosed in boxes. Line 4 computes the state set of the successor configuration.
If the shadow s can drive the state set Q. to Q; (c.f. line 4), and the shadow is
compatible to the configuration (determined by S #.1 at line 7), the value of
T in the successor configurations is assigned with true, indicated by Lines 7-9;
otherwise, the value of T remains the same during the configuration transition



Algorithm 1 transition((Qe, be, T¢.), 8, 0)
cs := (; // initialize result set
1 := label(s), Bs := shadowBinding(s); //extract label and bindings from s
//compute target states
Qt = 6(QC7 l)7
//compute configurations for objects moving to Qv;
BT = and(be, Bs);
if T #1 then
’ cs = csU (Qy, BT, true); ‘
9: end if
10: //compute configurations for objects staying in Q.;
11: B™ := U, cdom(s.) andNot(be, Bs,v) \ {L};

12: ’ cs :=csU{(Qc,7,T:) | B~ € B} ‘
13: return cs;

(Lines 11-12). Moreover, for the backward analysis, when we create an initial
configuration, the value of T" in the initial configuration is set to false.

Based on the extended configuration definition and the transition algorithm,
we can identify changeless configurations produced by backward analysis. For
a given shadow s and a configuration (@Q,b,T) in futures(s), if T is false, the
configuration will be considered to be interferential, and should be filtered when
checking whether the shadow s is a “nop shadow”.

4.2 Exploiting Local Object Information

First, we present how to determine whether a static object is a local object. We
have the following two observations: first, for a given static object inside in a
method, if it is created by a “new” statement within the method, the object
must be a local object to this method; second, for any two strong must-alias [9)
static objects O and O inside a method, these two objects always refer to a
same heap object, which implies that they always point to a same local object
or a same non-local object. Based on these two insights, Algorithm 2 is designed
to identify local objects.

For a given method m and a static object O, the algorithm returns true
if O is a local object in m; otherwise returns false. Algorithm 2 first declares
a set mewObjects, and then adds all the local objects created by the “new”
statements in m to newObjects (Lines 1-7). Then, the algorithm checks whether
there exists an element in newObjects that is strong must-alias to O (Lines 8-
12). Currently, the must-alias analysis is only intra-procedural flow-sensitive,
and makes a conservative assumption that any two static objects coming from
different methods may alias. Therefore, Algorithm 2 is an approximated, but
sound, evaluation. In order to gain more efficiency, we extract Lines 2-7 from
Algorithm 2 and compute the newObjects set before the optimized NSA.

Besides identifying local objects, for a configuration, we also need to know
whether it is gotten by statically modeling the multiple consecutive invocations



Algorithm 2 isLocalObject(m, O)

1: Set(staticObject) mnewObjects;

2: for all stmt € m do

3 if stmt is a new statement then

4: create a new static object O;;

5: newObjects := newObjects U {O; };
6

7

8

end if

: end for

: for all O; € newObjects do
9: if O; must-alias O then
10: return true;
11: end if
12: end for
13: return false;

of the analyzed method in forward or backward analysis. Same as the first op-
timization, we also extend the original configuration tuple to a triple (Q, b, R),
where R is true if the current configuration is indeed gotten by statically mod-
eling the multiple consecutive invocations of the analyzed method.

For a given method m, the intra-procedural control-flows cannot lead to the
multiple consecutive invocations of m. Hence, the shadows in methods cannot
change the value of R. Figure 4 visualizes four types of possible inter-procedural
control-flows (solid arrows) of m [7]. Solid arrows (1) and (2) are used to model
the transitively recursive method calls to m. We cannot determine that a method
call must be transitively recursive at compile-time. Hence, both of the arrows
(3a) and (3b) are used to model the non-recursive method calls within m. Addi-
tionally, method m can re-executes again after its returning. Arrows (4) is used to
model this case. Obviously, there are only three types of inter-procedural control
flows (solid arrows (1), (2) and (4)) in Figure 4, which can lead to the multiple
consecutive invocations of the method m. Therefore, in forward analysis, for all
the configurations that reach the entry statements of m or the recursive call
sites within m along these inter-procedural control flows, we should assign true
to R in these configurations. Based on the same argument, in backward analysis,
the value of R in configurations, which reach the exit statements of m or the
recursive call sites within m along these reverse inter-procedural control flows,
should be assigned t¢rue. Furthermore, for each initial configuration, the value of
R is set to false in both forward and backward analysis.

Based on Algorithm 2 and the extended configuration, we can filter interferen-
tial configurations as follows: for a given shadow s, which is usually a method call
statement, inside a method, if there exists a variable v in the variable bindings of
s pointing to a local object, a configuration (Q,b, R) in source(s) or futures(s)
can be safely eliminated if R is true. The reason is: even if the shadow s and the
configuration have a same static variable binding with respect to the variable
v, v will definitely point to a different object during each method invocation
at runtime, which means that the shadow s and the configuration are actually
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public void m(){
)
— potentially
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@

}

method exit

Fig. 4: Possible inter-procedural control-flows of a method [7]

not compatible at runtime. After eliminating all the interferential configurations
from sources(s) and futures(s), we use the remaining configurations to deter-
mine whether the shadow s is a “nop shadow” according to the conditions in
Section 2.

5 Experiments and Discussion

We have implemented our optimizations on the Clara framework [6] and con-
ducted experiments on the DaCapo benchmark suite [4]. NSA cannot support
multi-threaded programs. Hence, we ignore the multi-threaded programs hsqldb,
lusearch and zalan in the benchmark. Our experiments are based on the experi-
ments of the original NSA in [7]. We are only interested in 23 property/program
combinations for each of which the original NSA cannot remove all the shadows.
These 23 combinations involve 8 typestate properties and 7 programs. Table 1
lists the typestate properties used in the experiments.

In order to make our experimental results more convincible, we also limit
the maximum number of configurations to be 15000, which is the same as that
of the original NSA in [7]. Once the number of configurations computed by our
optimized analysis is above the threshold, it will abort the analysis of the current
method and process the next one.

We evaluate our optimizations as follows: for each optimization, we carry out
original NSA first, then use the optimized NSA to further identify “nop shad-
ows”. This way of evaluation is different from using an optimized NSA directly.
Actually, according to our experimental results, under the same configuration
limit, using an optimized NSA after original NSA will have better results than
that of using the optimized NSA directly. The reason is that using each optimized
analysis directly generates more configurations than the original NSA.

We conducted all the experiments on a Server with 256 GB memory and four
2.13GHz XEON CPUs.



Table 1: Typestates properties used in our experiments

Property Name Description

FailSafeEnum do not update a vector while iterating over it

FailSafeEnumHT do not update a hash table while iterating over its elements or keys

FailSafelter do not update a collection while iterating over it

FailSafelterMap  do not update a map while iterating over its keys or values

HasNextElem always call hasMoreElements before calling nextElement on an Enu-
meration

HasNext always call hasNext before calling next on an Iterator

Reader do not use a Reader after its InputStream is closed

Writer do not use a Writer after its OutputStream is closed

5.1 Experiment Results

To justify the effectiveness of our optimizations, we use original NSA as the
baseline for our experiments. Table 2 shows the results of our optimizations, and
the cases on which optimizations have no effect are not listed. The forth column
(Opt1) shows the number of remained shadows after using the first optimization,
i.e., identifying changeless configurations generated from backward analysis. For
4 out of 23 combinations (17.4%), our optimized analysis can further identify
removable shadows after the original NSA. In one case (FailSafelterMap +
bloat), the shadows removed by the optimized analysis are twice more than the
shadows removed by the original NSA.

The fifth column (Opt2) of Tables 2 shows the number of the shadows that
remain after using the optimization based on local object information. For 10
out of these 23 combinations (43.5%), the optimized NSA can further remove
shadows after the original NSA. In two cases (FailSafeEnum + fop and Fail-
Safelter + luindex), the optimization can remove all the shadows that remain
after the original NSA. Hence, the optimized NSA by local object information
can give the static guarantee that the program satisfies the typestate property
in each of these two cases. Furthermore, for 5 out of these 10 cases (50%), the
optimized analysis can further remove more irrelevant shadows than the original
one. Especially, in two cases (FailSafeEnum + fop and FailSafeEnumHT +
jython) out of these 5, the original NSA cannot remove any shadow.

The last column of Tables 2 shows the results of the combination of two opti-
mizations, i.e., optimizing by local object information first and then by removing
changeless configurations. For 13 out of these 23 combinations (56.5%), the com-
bined optimized analysis can further identify “nop shadows” after the original
NSA. In one case (FailSafelter 4+ bloat), the two optimizations both have
positive effects and identify different “nop shadows” respectively. Interestingly,
compared to perform these two optimizations after the original NSA individ-
ually, the combination can identify one more “nop shadow” in this case. The
reason is: after the original NSA, the second optimization firstly removes some
shadows from the instrumented program, so the first optimization generates less



Table 2: Results of the optimized NSA

Property + Program BN AN Optl Opt2 Both
FailSafeEnum + fop 5 5 ) 0 0
FailSafeEnum + jython 47 44 44 36 36
FailSafeEnumHT + jython 76 76 76 72 72
FailSafelter 4+ bloat 1010 916 911 905 899
FailSafelter + chart 158 150 150 120 120
FailSafelter + jython 119 115 115 105 105
FailSafelter + luindex 30 15 15 0 0
FailSafelter + pmd 305 290 290 262 262
FailSafelterMap + bloat 481 479 476 479 476
FailSafelterMap + jython 153 133 133 119 119
FailSafelterMap + pmd 372 262 262 260 260
Writer + antlr 44 35 34 35 34
Writer + bloat 19 11 9 11 9

BN: The number of shadows that remain before the original NSA. AN: The
number of shadows that remain after the original NSA. Opt1: The number of
shadows that remain after the first optimization. Opt2: The number of shadows
that remain after the second optimization. Both: The number of shadows that
remain after the combination of two optimizations.

configurations and can identify one more “nop shadow” under the same config-
uration limit. In addition, there are three cases where local object optimization
cannot remove any “nop shadow” but the other one can, which also justifies that
the two optimizations complement each other.

5.2 Analysis Time

The analysis time of NSA is mainly dominated by the prior supporting analyses,
such as constructing call graphs and computing points-to information. Because
we evaluate each optimization by using NSA first and then the optimized NSA,
the analysis time for evaluating each optimization is definitely longer than that
of the original NSA. Table 3 displays the results of the analysis time of the cases
on which our optimizations have effects.

From the experimental results, it can be justified that the time for NSA is
just a small part of the total compilation time. In all cases but two, the total
compilation time including our optimizations is under 10 minutes. The average
analysis time of the original NSA is under 1 minute, though in some cases it
needs a few more minutes, such as FailSafelter 4+ bloat. In some cases, the
analysis time for the optimized analysis is less than that of the original NSA.
One of the key reasons is that the optimized NSA analyzes less shadows. For
the optimized NSA with the combination of two optimizations, the analysis time
introduced by optimization is under 2 minutes in the majority of cases. Overall,
our optimization methods do not cause a significant overhead on the weaving



Table 3: The results of analysis time (in seconds)

Property + Program The 1st optimization The 2nd optimization
NSA Opt Total | NSA  Opt Total

FailSafeEnum + fop 0.98 0.1 251.14 1.21 0.39 276.87
FailSafeEnum + jython 8.06 0.2 243.55 8.23 1.87  269.35
FailSafeEnumHT + jython |10.30 0.69 240.91 | 10.41 8.19 271.05

FailSafelter + bloat 298.05 133.94 806.02 | 288.50 516.82 1214.12
FailSafelter + chart 25.35 1.64 305.92 | 24.15 66.08  393.04
FailSafelter + jython 16.9 0.74 270.23 | 17.69 14.87  303.80
FailSafelter 4 luindex 2.21 0.07 99.1 2.53 0.47 110.64
FailSafelter + pmd 46.01  2.51 352.67 | 46.97 112.01 490.54

FailSafelterMap + bloat 58.78 30.17 433.4 65.92 85.19  521.37
FailSafelterMap + jython 49.67 17.61  276.74 | 58.38 56 337.73
FailSafelterMap + pmd 77.67  4.25 420.05 | 77.72 96.84  541.66
Writer + antlr 12.95 0.83 223.76 13.7 9.06 253.48
Writer + bloat 1.56  0.24 128.66 1.68 0.34 140.08

NSA: The analysis time that original NSA consumes. Opt: The analysis time of
the optimized NSA after the original NSA. Total: the total compilation time of the
case.

process in experiments. Considering the total compilation time, the overhead
incurred by our optimizations is acceptable.

5.3 Discussions

According to the experimental results, the first optimization only has effects in
17.4% cases, which is not very impressive. The reason is that the optimization
works well on the methods containing several interleaved relevant method invo-
cations on different objects. For example, for the program in Figure 5(a), which
is slightly different from that in Figure 2 (the method calls on ¢; and ¢y are
not interleaved), the original NSA can identify the shadow at line 9 as a “nop
shadow”. Hence, the capability of the optimized NSA is the same as that of the
original one in this case.

The optimization based on local objects also has limitations. For example,
it has no effect on the local objects created within loop statements. In Figure
5(b), we show a method m that extends the method in Figure 3 by adding a
loop. Obviously, the method satisfies the typestate property in Figure 1, but the
optimized NSA by using local object information cannot remove the shadows at
lines 5 and 6. The reason is the forward analysis will propagate the configurations
at the end of a “for” statement to the entry of the “for” statement, and the
backward analysis will propagate configurations in the inverse direction too.
Therefore, we can further optimize NSA based on the local objects created in
loop statements, which will be the future work.

Finally, we should note that even if the original NSA is inter-procedural flow-
sensitive, it could not remove the shadows in Figure 2 and Figure 3 either. Hence,



1 public static void main(String args[]) {

2 Connection cl = new Connection(args[0]); I public void m(String args[]) {

3 Connection c¢2 = new Connection(args[0]); 2 for(inti=0;i< 10; i++)

4 cl.close(); 3 ’ ’

> ol .wr%te(args[l]); 4 Connection c1 = new Connection(args[0]);
6 cl.write(args[1]); 5 cLwrite(args[1]);

7 c2.close(); 6 cl.close();

8  c2.write(args[1]); 7 ’

9  c2.close();

10 c2.write(args[1]);

11}

(a) A program similar to the program in figure 3

8}
(b) An example similar to the example in figure 4

Fig. 5: Examples on which optimizations have no effect

the main ideas of our optimizations can also be used in the inter-procedural flow-
sensitive static analysis.

6 Related Work

Recently, typestate analysis of large-scale programs attracts much attention,
and several static and dynamic typestate analysis methods are proposed and
implemented. In [13], Fink et al. propose a context-sensitive, flow-sensitive and
integrated static typestate verifier. The verifier utilizes a combined abstract do-
main of typestate and pointer abstractions to improve the precision of alias
analysis. Their static analysis framework is designed to be a staged system to
improve the scalability and efficiency. However, their approach cannot verify the
typestate specifications of multiple objects. In [18], a hybrid typestate analy-
sis is proposed and implemented to be context-sensitive and inter-procedural
flow-sensitive. The static analysis in [18] is based on a lattice-based operational
semantics, which supports to track individual objects along control-flow paths
and compute typestate information and points-to information simultaneously.
However, their approach suffers from unsoundness problem [7]. Besides those
work, Rahul Purandare presents in [20] a cost model for runtime monitoring.
The model explains key factors of monitoring overhead and the relationship
among them. The cost model guides the optimization of runtime monitoring.
Different from the hybrid method in this paper, the approach in [20] also tries to
remove instrumentations at runtime [21]. Furthermore, their optimization can
reduce the runtime overhead by reclaiming unnecessary monitors. Whereas, their
hybrid approach may easily lead to unacceptable overhead at runtime, especially
for the typestate properties involving multiple interacting objects. In addition,
when unchecked exceptions happen, the method may produce unsound results.

7 Conclusion

In this paper, we present two optimization approaches for NSA to improve the
precision. One optimization identifies changeless configurations during the back-



ward analysis; the other one use local object information to refine the forward
analysis and backward analysis of NSA. According to the experiments on the
DaCapo benchmark suite, in more than half of the studied cases, the optimized
NSA can further remove unnecessary instrumentations, without a significant
overhead. Additionally, we dissect the experimental results and the situations
in which our optimizations have no effect. Furthermore, the main ideas of our
optimizations can also be used in inter-procedural flow-sensitive static analysis.
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