
CCMOP: A Runtime Verification Tool for
C/C++ Programs?

Yongchao Xing1,2, Zhenbang Chen1,2(�)[0000−0002−4066−7892], Shibo Xu1,2, and
Yufeng Zhang3[0000−0001−6082−4501]

1 College of Computer, National University of Defense Technology, Changsha, China
2 Key Laboratory of Software Engineering for Complex Systems, National University

of Defense Technology, Changsha, China
3 College of Computer Science and Electronic Engineering, Hunan University,

Changsha, China
{xingyc0979, zbchen}@nudt.edu.cn, yufengzhang@hnu.edu.cn

Abstract. Runtime verification (RV) is an effective lightweight formal
method for improving software’s reliability at runtime. There exist no
RV tools specially designed for C++ programs. This paper introduces
the first one, i.e., CCMOP, which implements an AOP-based RV ap-
proach and supports the RV of general properties for C/C++ program.
CCMOP provides an AOP language specially designed for C++ pro-
gram to define the events in RV. The instrumentation of RV monitor
is done at AST-level, which improves the efficiency of compilation and
the accuracy of RV. CCMOP is implemented based on JavaMOP and
an industrial-strength compiler. The results of extensive experiments on
100 real-world C/C++ programs (5584.3K LOCs in total) indicate that
CCMOP is robust and supports the RV of real-world C/C++ programs.

Keywords: Runtime Verification · C/C++ · Instrumentation · AOP.

1 Introduction

Runtime verification (RV) [19] is a lightweight formal method for verifying pro-
gram executions. Different from the traditional formal verification methods, such
as model checking [13] and theorem proving [15,21], which verify the whole be-
havior of the program and often face state explosion problem [14] or need labor-
intensive manual efforts, runtime verification only verifies a trace (execution) of
the program. When the program P is running, runtime verification techniques
collect P’s running information and usually abstract the information into events.
A program trace t is an event sequence. Then, the verification is carried out on
the fly for the trace with respect to a formal property ϕ, e.g., a line-time tem-
poral logic (LTL) property; If t does not satisfy ϕ [26], the runtime verification

? CCMOP is available at https://rv-ccmop.github.io. Zhenbang Chen is the corre-
sponding author.

2 Yongchao Xing et al.

will take some efforts, e.g., reporting a warning or error and terminating P in
advance. In this way, runtime verification does not suffer from the scalability
problem of traditional formal verification techniques.

Until now, there already exist many runtime verification tools [6] for different
program languages, e.g., RTC [23] and E-ACSL [30] for C programs, JavaMOP
[8] and TraceMatches [4] for Java programs, to name a few. Usually, a runtime
verification tool accepts a program P and a property ϕ. Then, the tool auto-
matically generates a runtime monitor M for ϕ and instruments the monitor
into P. When the instrumented version of P is executed, M will online verify
P’s trace with respect to ϕ. Existing runtime verification tools differ in different
aspects, including the target program’s language, implementation mechanisms
(e.g., instrumentation and VM-based approaches), supported verification prop-
erties (e.g., LTL, FSM, and CFG), etc. These tools are widely applied in different
areas and backgrounds [19], which shows the effectiveness of runtime verification.

However, the RV tools for C++ programs are still in demand. Although there ex-
ist some sanitizer tools [17] of the LLVM platform [20] that instrument the moni-
tor at the intermediate representation (IR) level, they can only monitor memory-
specific properties. Besides, binary-level instrumentation-based RV tools, in prin-
ciple, support C++ programs, but they also suffer the problems of overhead,
across-platform, and inaccuracy [27,32]. As far as we know, there does not exist
a runtime verification tool specially designed for C++ programs that supports
general properties and instrument monitors at the source code level.

This paper presents CCMOP, i.e., a runtime verification tool for C/C++ pro-
grams following the design of JavaMOP [8]. The runtime monitor of the prop-
erty is first generated in an aspect-oriented programming (AOP) language. We
have designed and implemented an AOP platform for C/C++ programs to
support the automatic instrumentation of runtime monitors. Monitors can be
transparently woven into the program during program compilation. The weav-
ing is carried out at the source code level and on the program’s abstract syntax
tree (AST). We have implemented the AOP platform based on Clang [12], i.e.,
an industrial-strength compiler. We have applied CCMOP for 100 real-world
C/C++ programs to evaluate our tool. The results indicate that CCMOP can
support the runtime verification of real-world C/C++ programs for general prop-
erties. The main contributions are as follows.

– We have implemented a runtime verification tool for C/C++ programs that
supports the RV of general properties. As far as we know, CCMOP is the
first source-level instrumentation-based RV tool for C++ programs.

– We have applied CCMOP for 100 real-world C/C++ programs (5584.3K
LOCs in total) with standard C++ language features. The experimental
results indicate that CCMOP supports the RV for large-scale C/C++ pro-
grams. The runtime overhead of CCMOP on C++ programs is 88% for the
use-after-free property.

CCMOP: A Runtime Verification Tool for C/C++ Programs 3

Property

Monitor
Generator

AOP
Declaration

Monitor
C++ Code

Compiler
Frontend

ASTs

Instrumented
ASTs

Compiler Monitor Binary Program Binary

Program

Compiler Optimizer and
Backend

Weaver

LinkerExecutable Binary with Monitors

Fig. 1. CCMOP’s framework.

2 Framework

Figure 1 shows the framework and basic workflow of CCMOP. The inputs are
a property ϕ and a program P, and the output is the executable binary of the
program in which monitors are instrumented. The workflow can be divided into
two stages: monitor generation and monitor weaving.

Monitor Generation CCMOP adopts the RV framework of JavaMOP [8]
that utilizes AOP for property specification and monitor instrumentation. The
property syntax is a variant of JavaMOP’s MOP syntax for C/C++ programs.
A property ϕ is composed of the following two parts.

– The declarations of the events, defined by different AOP pointcuts [18], and
the AOP language is explained in Section 3. Besides, we can also specify
the C/C++ code that will be executed when the event is generated. For
example, the following defines event create for each new statement in the
C++ program, and the event create is generated after the execution of the
new statement.

event create after(void* key):expr(new *(...))&&result(key) {} (1)

– The formal property defined on the event level, which can be specified by
different formalisms, including a logic (e.g., LTL), an automaton (e.g., FSM),
and a regular expression, etc. The property gives the specification that the
program should satisfy during program execution. If the execution satisfies
or does not satisfy the property, some operations can be carried out. These
operations can be C/C++ statements that are also given in the property.

4 Yongchao Xing et al.

Based on the property ϕ, CCMOP automatically generates two parts. The first
part is the AOP declarations that are in charge of generating events, which are
generated with respect to ϕ’s event definitions. The second part is the C/C++
code of the runtime monitor, which is generated with respect to ϕ’s property.
The key idea of generating runtime monitors is to generate an automaton for
runtime verification according to ϕ’s formal property [7]. Besides, monitor code
also contains the event interface methods that interact with system execution.

Monitor Weaving. The second stage happens at the compilation of P. The
main job is to instrument the event generation code at the appropriate places of
P, accomplished by the Weaver. According to the AOP declarations D gener-
ated at the first stage, Weaver finds the matched P’s statements of the pointcuts
in D on P’s AST. Then, the event generation code is inserted before or after the
statements according to the requirements of the event declarations in ϕ. Here,
the instrumentation is carried out directly on AST. Event generation code in-
vokes the event interface method in the monitor code to notify the monitor that
an event is generated and the runtime checking needs to be carried out.

For example, the following code shows the source code after weaving the code for
the event create. There exists a statement that the pointer p is assigned with the
address returned by a new statement. After instrumentation, the pointer p will
be passed as the parameter of the event create’s interface method invocation.

1 int main(){

2 int *p = new int;

3 int *key_1=p;

4 __RVC_UAF_create(key_1);

5 return 0;

6 }

After weaving, the instrumented AST will
be used for compiler optimization and
code generation in the later compilation
stages. Finally, a binary that can generate
events for RV is generated. After getting
the binary that can generate events, we
need to link the binary with the monitor

binary that does the real verification job. The executable binary with runtime
monitors (denoted by Pm) is finally generated. Then, we can run Pm with dif-
ferent inputs, and the runtime monitors will carry out the operations defined in
ϕ when ϕ is violated or satisfied.

In principle, our framework provides an online synchronous approach to runtime
verification. The instrumentation for RV is carried out on AST, which enjoys
the advantages including lower-overhead, across-platform, accuracy, etc.

3 Design and Implementation

AOP Language for C/C++. Figure 2 shows the critical parts of the AOP
language for C/C++. The language is based on AspectJ [18], and the figure
only shows the abbreviated version for the sake of brevity, where ε represents
the empty string, 〈ID〉 represents an identity name, 〈IDs〉 represents a comma
dotted 〈ID〉 sequence. The particular syntax elements for C/C++ are as follows.

CCMOP: A Runtime Verification Tool for C/C++ Programs 5

〈Advice〉 ::= advice 〈SPointCut〉〈VPointCuts〉:(before | after | around)(〈VarDecl〉)
〈SPointCut〉 ::= call(〈FuncDecl〉) | expr(〈CExprDecl〉) | deref (〈ScopedTypes〉) |

end() | 〈SPointCut〉 || 〈SPointCut〉
〈VPointCuts〉 ::= ε | && 〈VPointCut〉 | && 〈VPointCut〉 〈VPointCuts〉
〈VPointCut〉 ::= args(〈IDs〉) | result(〈ID〉) | target(〈ID〉) | within(〈SpaceDecl〉)
〈VarDecl〉 ::= ε | 〈ScopedType〉 〈ID〉 | 〈ScopedType〉 〈ID〉,〈VarDecl〉
〈FuncDecl〉 ::= (% | 〈ScopedType〉) (〈ScopedType〉.〈ID〉 | 〈ID〉)(〈ScopedTypes〉 | ...)
〈CExprDecl〉 ::= new 〈ExprDecl〉 | delete 〈ExprDecl〉 | 〈ExprDecl〉
〈ExprDecl〉 ::= (〈ScopedType〉::* | 〈ScopedType〉 | *)(〈ScopedTypes〉 | ...)
〈SpaceDecl〉 ::= 〈ScopedType〉 | 〈ScopedType〉()

〈ScopedTypes〉 ::= 〈ScopedType〉 | 〈ScopedType〉,〈ScopedTypes〉
〈ScopedType〉 ::= 〈BasicType〉 | 〈BasicType〉::〈ScopedType〉 | 〈ScopedType〉*
〈BasicType〉 ::= 〈ID〉 | 〈ID〉<〈ScopedTypes〉> | 〈PrimitiveTypes〉

Fig. 2. The core syntax of the AOP language.

– We introduce deref to match the pointer dereferences in C/C++ programs.
Here is an example of the pointcut for matching the dereferences of all string
pointers: deref(std::basic_string<char> *).

– To support the namespace and template mechanisms in C++, we intro-
duce 〈ScopedType〉, which is also compatible with matching the functions
and types of C programs. Besides, we also introduce cexpr for matching
the object management statements in C++ programs, including class con-
structors, new and delete statements. Furthermore, call(〈FuncDecl〉) also
supports the matching of the operator functions in C++ program (e.g.,
operator+(...)), and the details are omitted for the sake of brevity.

Similar to JavaMOP, 〈Advice〉 is used to capture the monitored objects. For
example, the AOP declaration for the event create in (1) is as follows.

advice expr(new *(...)) && result(key) : after(void* key) {} (2)

Implementation. CCMOP’s implementation is based on JavaMOP [8] and
Clang [12]. We explain the two gray components in Figure 1 as follows.

– Monitor Generator. We reused the MOP syntax of JavaMOP and modi-
fied it to enable the usage of our AOP language in Figure 2 for defining events
and the definitions of C/C++ code in event handlers. Besides, we have also
developed the C++ runtime monitor code generator based on JavaMOP’s
RV-Monitor component. We support two specification languages: extended
regular expression (ERE) and finite state machine (FSM). More specification
languages in RV-Monitor are to be supported in the future.

– Weaver. We implemented the weaver for the AOP language in Figure 2
based on Clang. We find the pointcut matched statements by Clang’s AST
matching framework [11]. Besides, the instrumentation defined in the AOP

6 Yongchao Xing et al.

declarations is also carried out on AST, which is implemented by the AST
transformation mechanism [1] of Clang. There are two advantages of AST-
level instrumentation: First, compared with the source code text-based ap-
proach [10], it is more precise for the advanced mechanisms in C/C++ pro-
grams, such as #define and typedef, which are widely used in real-world
programs; Second, AST-level instrumentation is carried out just before the
IR generation, which enables just one time of parsing instead of two times
needed by the source code text-based instrumentation method [10].

Limitations. There are following limitations of CCMOP. First, due to the
widespread use of typedef in C/C++, some types are translated to other types
on the AST-level. However, the description of 〈Advice〉 needs to specify the types
in ASTs. For example, std::string is translated to std::basic string<char>

in ASTs, and we need to use std::basic string<char> in 〈Advice〉 specification
to capture the objects of std::string. Second, CCMOP’s event specification
is limited and only supports specific types of events, e.g., method invocations,
object constructions and memory operations. Third, CCMOP does not support
multi-threaded C/C++ programs.

4 Evaluation

Basic Usage. CCMOP provides a script wac for compiling a single C/C++ file.
The basic usage is demonstrated as follows, where we are compiling a single C++
file into the executable binary demo, and the RV with respect to the property
will be carried out when running demo.

wac -cxx -mop <a property file> <a CPP file> -o demo

Besides, we also provide a meta-compiling [33] based script for real-world C/C++
projects with multiple files and employing standard build systems (e.g., make and
cmake). More details are provided on our tool’s website4.

We evaluate CCMOP for answering the following three research questions.

– Applicability. Can CCMOP support the RV of real-world C/C++ pro-
grams (especially C++ programs) with different scales?

– Overhead. How about the overhead of CCMOP when doing the RV of
real-world C/C++ programs? Here, we only care about time overhead.

– Soundness and Precision. How about the soundness and precision of
CCMOP? Here, soundness means the ability to detect all bugs, and precision
means no false alarms.

4 https://rv-ccmop.github.io

CCMOP: A Runtime Verification Tool for C/C++ Programs 7

Benchmark Programs. To answer the first question, we applied CCMOP to
different scaled benchmarks used in the literature of RV [10,34] and fuzzing [22].
Besides, we also get high-starred C++ projects from GitHub. Table 1 shows
the benchmarks. In total, we have 100 real-world C/C++ programs. Our tool’s
website provides more details of our benchmark programs.

Table 1. C/C++ Benchmark Programs.

Type Benchmark Name Description

C
mini-benchmarks in MoveC [10,9] 126 mini-programs (2.6K LOCs in total)

Ferry[34] and FuzzBench [22] 15 programs (2.5∼228.5K LOCs)
High-starred GitHub Projects 35 programs (0.1∼239.5K LOCs)

C++
FuzzBench [22] 6 programs (10.5∼538.6K LOCs)

High-starred GitHub Projects 44 programs (1.0∼675.2K LOCs)

Properties. Table 2 shows the properties used in the evaluation. The two prop-
erties, i.e., use-after-free and memory leak, are used for both C and C++ pro-
grams. However, the event definitions are different. For C programs, we weave
monitors when calling malloc and free; For C++ programs, we weave monitors
to the new and delete statements.

Table 2. C/C++ Benchmark Properties.

Type Property Name Description

C
Use-after-free Pointer is dereferenced after freed (free)
Memory leak Memory is allocated (malloc) but not freed

Read-after-close A FILE is read after close

C++
Use-after-free Pointer is dereferenced after freed (delete)
Memory leak Memory is allocated (new) but not freed
Safe Iterator A collection should not be updated when it is being iterated

To answer the second question, we consider the C/C++ benchmarks that have
many statements matching the property’s pointcuts (i.e., with non-negligible
overhead) and provide test cases for demonstration and running. We compare
CCMOP with LLVM’s AddressSanitizer [27], which is widely used for memory
checking of C/C++ programs, and the property is use-after-free5.

To answer the third question, we applied CCMOP to SARD-100 [16] and Toyota
ITC [29] benchmarks, in which source code is available. These two benchmarks
focus on the detection of memory-related bugs (e.g., memory leak and use-after-
free). We evaluate CCMOP’s soundness and precision for detecting memory leak

5 We disable the other checkers in AddressSanitizer with options mentioned in website.

8 Yongchao Xing et al.

Fig. 3. Compilation time overhead.

and use-after-free bugs by running the programs with the test inputs provided
by the benchmarks.

All the experiments were carried out on a laptop with a 2.60 GHz CPU and 32G
memory, and the operating system is Ubuntu 20.04. The experimental result
values of compilation time and runtime overhead are the averaged values of
three runs’ results.

Experimental Results. We applied CCMOP to do the RV for each benchmark
program with respect to each property. Our tool can be successfully applied to
126 mini-benchmark programs from MoveC [10]. For the 100 real-world C/C++
programs, our tool can also support the weaving of RV monitors of all the prop-
erties during compilation. Figure 3 shows the result of compilation information.

The X-axis shows the program identities, where the first 50 programs are C pro-
grams, and the last 50 are C++ programs. The Y-axis shows the compilation
time overhead compared with the original compilation time (denoted by CO),
i.e., (CRV − CO)/CO, where CRV denotes the compilation time of RV. On av-
erage, the overheads of compilation time for use-after-free, memory leak, and
read-after-close/safe-iterator are 2.01, 1.84, and 1.91, respectively. Due to the
frequent usage of pointer operations, the overhead of use-after-free is usually the
largest. For many programs (78%), the overhead is below 300%. There are nine
small-scale programs whose overhead is over 500%. The reason is that the com-
pilation of monitor code dominates the compilation procedure. For comparison,
we applied LLVM’s AddressSanitizer [27] to each benchmarks, and the average
overhead of compilation time is 0.98.

Figure 4 shows the runtime overhead results for programs with notable changes.

CCMOP: A Runtime Verification Tool for C/C++ Programs 9

Fig. 4. Runtime overhead.

The X-axis displays the program name,
and the Y-axis displays the overhead
compared with the original program
without RV. Each Y-axis value is calcu-
lated as follows: log10(TRV /To), where
To is the time of original program with-
out RV, and TRV is the time with RV.
The figure shows that CCMOP’s over-
head is comparable with AddressSan-

tinizer. The averaged overheads of AddressSantinizer and CCMOP are 81.9%
and 88%, respectively. Furthermore, the results of the C benchmark programs
(which have many memory operations) indicate that CCMOP’s overhead is
961.6% on average. The detailed results are available on CCMOP’s website.

Table 3 shows the results of soundness and precision on the two properties. For
the property of memory leak, there are 5 and 18 test cases in SARD-100 [16]

Table 3. Bug Detection Results of CCMOP.
Benchmark Name Memory leak Use-after-free

SARD-100 [16] 100%(5/5) 100%(9/9)
Toyota ITC [29] 100%(18/18) 80%(12/15)

Summary 100%(23/23) 87.5%(21/24)

and Toyota ITC [29], respec-
tively. CCMOP detected all
bugs. For the property of use-
after-free, there exist 9 and 15
test cases in SARD-100 and
Toyota ITC, respectively. The
majority of bugs (i.e., 21 out

of 24) can be detected. The reasons of missing bugs in three test cases are as
follows: 1) in two test cases, there is no dereference of the freed pointer, but our
property of use-after-free requires the dereference of the pointer; 2) in one case,
there are nested pointer dereferences, on which CCMOP is limited and crashed.
Besides, CCMOP does not produce any false alarms on these two benchmarks.

5 Related Work

There already exist many RV tools developed in different backgrounds. There-
fore, we divide the existing tools according to the implementation level of in-
strumentation.

Source-level. MoveC [10] is a RV tool for C programs and adopts source-code
level instrumentation. MoveC supports the detection of segment, spatial and
temporal memory errors, which is enabled by its monitoring data structure called
smart status. Like MoveC, RTC [23] also implements the detection of memory
errors and runtime type violations for C programs based on source-code instru-
mentation, and the implementation is based on the ROSE compiler platform [3].
E-ACSL [30] supports the checking of security properties for the C programs an-
notated with a formal specification language. Compared with these three tools,
CCMOP supports the RV of C++ programs, and the instrumentation is carried
out directly on ASTs. AspectC++ [5] is an AOP framework designed for C++

10 Yongchao Xing et al.

language and also instruments at the source-code level. However, AspectC++
does not support C programs well because the instrumented programs can only
be compiled by a C++ compiler. Compared with AspectC++, our AOP frame-
work has limited AOP features but supports both C and C++ programs.

IR-level. There exist some RV tools that instrument monitors at IR-level, in-
cluding Google’s sanitizers [27,32], SoftBoundCETS [25,24], and Memsafe[31],
etc. These tools enjoy the benefits of IR-level instrumentation and support mul-
tiple languages. However, all of the mentioned tools can only support detecting
memory-related properties. Besides these tools for C-family languages, we also
classify JavaMOP [8] and Tracematches [4] into this category. Both tools adopt
AOP-based instrumentation for runtime monitors, and the weaving is carried
out directly on Java class files. These two tools inspire our tool, and our imple-
mentation is based on JavaMOP.

Binary-level. Some runtime monitoring tools adopt binary-level instrumenta-
tion of monitors. For example, MemCheck [28] is one of the most widely used
tools for detecting memory errors and employs dynamic binary instrumentation
(DBI) to implement memory runtime checks. Purify [2] is a commercial tool for
detecting memory access-related errors for C/C++ programs and is also imple-
mented based on DBI.

6 Conclusion and Future Work

This paper introduces CCMOP, a runtime verification tool for C/C++ programs.
Inspired by JavaMOP [8], CCMOP adopts AOP-based monitor instrumentation
and supports automatic monitor code generation and instrumentation. More-
over, CCMOP does instrumentation on the AST level. We have implemented
CCMOP based on JavaMOP and Clang. To evaluate CCMOP, we have applied
it to 100 real-world C/C++ programs, including 50 C++ programs. The ex-
perimental results indicate that CCMOP supports the RV of different scaled
C/C++ programs and enables a transparent weaving of RV monitors.

The next step includes the following perspectives: 1) Improve the efficiency of RV
by implementing more advanced RV optimization algorithms; 2) Support multi-
threaded C/C++ programs; 3) Support more specification languages (e.g., LTL
and CFG).

Acknowledgments. This research was supported by National Key R&D Pro-
gram of China (No. 2022YFB4501903) and the NSFC Programs (No. 62172429
and 62002107).

CCMOP: A Runtime Verification Tool for C/C++ Programs 11

References

1. Clang: The Clang TreeTransform Class Template Reference, https://clang.llvm.
org/doxygen/classclang_1_1TreeTransform.html

2. IBM: The Purify Documentation, https://www.ibm.com/support/pages/

tools-purify

3. ROSE: Main Page, http://rosecompiler.org/ROSE_HTML_Reference/index.

html

4. Allan, C., Avgustinov, P., Christensen, A.S.: Adding Trace Matching with Free
Variables to AspectJ. In: Proceedings of the 20th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2005. pp. 345–364. ACM (2005)

5. AspectC++: Aspectc++ Publications. https://www.aspectc.org/

Publications.php (2021)

6. Bartocci, E., Deshmukh, J.V., Donzé, A.: Specification-Based Monitoring of Cyber-
Physical Systems: A Survey on Theory, Tools and Applications. In: Lectures on
Runtime Verification - Introductory and Advanced Topics, Lecture Notes in Com-
puter Science, vol. 10457, pp. 135–175. Springer (2018)

7. Chen, F., Meredith, P.O., Jin, D., Rosu, G.: Efficient Formalism-Independent Mon-
itoring of Parametric Properties. In: ASE 2009, 24th IEEE/ACM International
Conference on Automated Software Engineering, Auckland. pp. 383–394. IEEE
Computer Society (2009)

8. Chen, F., Rosu, G.: Java-MOP: A Monitoring Oriented Programming Environment
for Java. In: Tools and Algorithms for the Construction and Analysis of Systems,
11th International Conference, TACAS 2005. Lecture Notes in Computer Science,
vol. 3440, pp. 546–550. Springer (2005)

9. Chen, Z., Wang, C., Yan, J.: Runtime detection of memory errors with smart
status. In: ISSTA ’21: 30th ACM SIGSOFT International Symposium on Software
Testing and Analysis. pp. 296–308. ACM (2021)

10. Chen, Z., Yan, J., Kan, S., Qian, J., Xue, J.: Detecting Memory Errors at Runtime
with Source-Level Instrumentation. In: Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2019. pp. 341–
351. ACM (2019)

11. Clang: The AST Matcher Reference. https://clang.llvm.org/docs/

LibASTMatchersReference.html (2023)

12. Clang-15.02: Clang - A C language family frontend for LLVM. https://clang.
llvm.org/ (2023)

13. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking. In: Proceedings of the
NATO Advanced Study Institute on Deductive Program Design. pp. 305–349
(1996)

14. Clarke, E.M., Klieber, W., Novácek, M., Zuliani, P.: Model Checking and the
State Explosion Problem. In: Tools for Practical Software Verification, LASER,
International Summer School 2011. Lecture Notes in Computer Science, vol. 7682,
pp. 1–30. Springer (2011)

15. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-
proving. Commun. ACM 5(7), 394–397 (1962)

16. Delaitre, A.: Test suite #100: C test suite for source code analyzer v2 - vulnerable
(2015), https://samate.nist.gov/SRD/view.php?tsID=100

17. Google: sanitizers. https://github.com/google/sanitizers (2023)

https://clang.llvm.org/doxygen/classclang_1_1TreeTransform.html
https://clang.llvm.org/doxygen/classclang_1_1TreeTransform.html
https://www.ibm.com/support/pages/tools-purify
https://www.ibm.com/support/pages/tools-purify
http://rosecompiler.org/ROSE_HTML_Reference/index.html
http://rosecompiler.org/ROSE_HTML_Reference/index.html
https://www.aspectc.org/Publications.php
https://www.aspectc.org/Publications.php
https://clang.llvm.org/docs/LibASTMatchersReference.html
https://clang.llvm.org/docs/LibASTMatchersReference.html
https://clang.llvm.org/
https://clang.llvm.org/
https://samate.nist.gov/SRD/view.php?tsID=100
https://github.com/google/sanitizers

12 Yongchao Xing et al.

18. Kiczales, G., Hilsdale, E., Hugunin, J.: An Overview of AspectJ. In: ECOOP 2001 -
Object-Oriented Programming, 15th European Conference. Lecture Notes in Com-
puter Science, vol. 2072, pp. 327–353. Springer (2001)

19. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Alge-
braic Methods Program. 78(5), 293–303 (2009)

20. LLVM: The LLVM Compiler Infrastructure Project. https://llvm.org/ (2023)
21. Loveland, D.W.: Automated theorem proving: a logical basis
22. Metzman, J., Szekeres, L., Simon, L.: Fuzzbench: an open fuzzer benchmarking

platform and service. In: ESEC/FSE ’21: 29th ACM Joint European Software En-
gineering Conference and Symposium on the Foundations of Software Engineering.
pp. 1393–1403. ACM (2021)

23. Milewicz, R., Vanka, R., Tuck, J.: Runtime checking C programs. In: Proceedings
of the 30th Annual ACM Symposium on Applied Computing. pp. 2107–2114. ACM
(2015)

24. Nagarakatte, S., Zhao, J., Martin, M.M.K.: CETS: compiler enforced temporal
safety for C. In: Proceedings of the 9th International Symposium on Memory Man-
agement, ISMM 2010. pp. 31–40. ACM (2010)

25. Nagarakatte, S., Zhao, J., Martin, M.M.K., Zdancewic, S.: SoftBound: Highly Com-
patible and Complete Spatial Memory Safety for C. In: Proceedings of the 2009
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2009. pp. 245–258. ACM (2009)

26. Pnueli, A.: The Temporal Logic of Programs. In: 18th Annual Symposium on
Foundations of Computer Science, Providence. pp. 46–57. IEEE Computer Society
(1977)

27. Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D.: AddressSanitizer: A Fast
Address Sanity Checker. In: 2012 USENIX Annual Technical Conference, Boston.
pp. 309–318. USENIX Association (2012)

28. Seward, J., Nethercote, N.: Using Valgrind to Detect Undefined Value Errors with
Bit-Precision. In: Proceedings of the 2005 USENIX Annual Technical Conference.
pp. 17–30. USENIX (2005)

29. Shiraishi, S., Mohan, V., Marimuthu, H.: Test suites for benchmarks of static
analysis tools. In: 2015 IEEE International Symposium on Software Reliability
Engineering Workshops, ISSRE Workshops. pp. 12–15. IEEE Computer Society
(2015)

30. Signoles, J., Kosmatov, N., Vorobyov, K.: E-ACSL, a Runtime Verification Tool
for Safety and Security of C Programs (tool paper). In: RV-CuBES 2017. An
International Workshop on Competitions, Usability, Benchmarks, Evaluation, and
Standardisation for Runtime Verification Tools. Kalpa Publications in Computing,
vol. 3, pp. 164–173. EasyChair (2017)

31. Simpson, M.S., Barua, R.: MemSafe: Ensuring the Spatial and Temporal Memory
Safety of C at Runtime. Softw. Pract. Exp. 43(1), 93–128 (2013)

32. Stepanov, E., Serebryany, K.: Memorysanitizer: fast detector of uninitialized mem-
ory use in C++. In: Proceedings of the 13th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, CGO 2015. pp. 46–55. IEEE
Computer Society (2015)

33. travitch: The Whole Program LLVM Project. https://github.com/travitch/

whole-program-llvm (2015)
34. Zhou, S., Yang, Z., Qiao, D.: Ferry: State-Aware Symbolic Execution for Exploring

State-Dependent Program Paths. In: 31st USENIX Security Symposium, USENIX
Security 2022. pp. 4365–4382. USENIX Association (2022)

https://llvm.org/
https://github.com/travitch/whole-program-llvm
https://github.com/travitch/whole-program-llvm

	CCMOP: A Runtime Verification Tool for C/C++ Programs

