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Abstract. Behavior trees (BTs) have been extensively applied in the
area of both computer games and robotics, as the control architectures.
However, the construction of BTs is labor-expensive, time-consuming,
and even impossible as the complexity of task increases. In this work,
we propose a formal verification based synthesis method to automati-
cally construct BTs whose behaviors satisfy the given Linear Temporal
Logic (LTL) specifications. Our method first explores candidate BTs by
a grammar-based Monte Carlo Tree Search (MCTS), then the explored
BTs are transformed into Communicating Sequential Processes (CSP)
models. After that, we invoke the verifier to check the models’ correct-
ness w.r.t. specifications, and provide feedback based on the verification
result for guiding the search process. The application of our method on
several representative robotic missions indicates its promising.

Keywords: Behavior Trees · MCTS · CSP · Synthesis.

1 Introduction

Behavior Trees (BTs) [15] are models that control the agent’s decision-making
behavior through a hierarchical tree structure. The development of BTs can be
traced back to their applications in the field of computer games, wherein BTs are
initially used to facilitate the design and control of non-player characters [26, 18,
20]. Afterwards, BTs’ application is gradually extended to the area of robotics,
like mobile ground robots [19, 7], unmanned aerial vehicles [17, 28], to name a
few. It’s incontestable that BTs play a more and more important role in the area
of both computer games and robotics, as the control architectures.

Compared with other control architectures, like Decision Trees (DTs) [27],
Teleo-reactive Programs (TRs) [22] and Finite State Machines (FSMs) [14], the
reactivity and modularity of BTs make it more applicable and flexible to accom-
plish tasks in unpredictable environments [8]. The support for reactivity means
the agent can interrupt an ongoing task to execute another task for reacting to
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the environment changes, while the support of modularity means we can natu-
rally combine several individually designed BTs into a more complex BT without
providing any auxiliary glue-codes. Although BTs are being adopted and devel-
oped due to their promising features, their construction is still problematic espe-
cially when dealing with complex robotic tasks in unpredictable environments.
Manually designing BTs usually becomes labor-expensive, time-consuming, and
even impossible as the task involves more and more objects and subtasks. There-
fore, it’s expected that the construction of BTs can be automatic.

In this work, we propose a formal verification based synthesis method to
automatically construct BTs whose behaviors satisfy the given Linear Tempo-
ral Logic (LTL) specifications. Our method first explores candidate BTs by a
grammar-based Monte Carlo Tree Search (MCTS). Considering that BTs are
not suitable formal models for formal verification w.r.t. properties, the explored
BTs are transformed into Communicating Sequential Processes (CSP [13]) mod-
els. After that, we invoke the verifier to check the models’ correctness w.r.t.
specifications, and provide feedback based on the verification result for guiding
the search process. The main contributions of this work are as follows:

– We proposed a formal verification based synthesis method for BTs. To the
best of our knowledge, the combination of the verification method and the
synthesis method for BTs hasn’t been investigated before.

– We designed a CSP modelling method for BTs to capture their behaviors.
The correctness of BTs’ behaviors thereby can be checked by verifying the
CSP model w.r.t. LTL specifications.

– We provided a method to evaluate the verification result and utilized this
evaluation feedback to guide the search process, which improved the search
efficiency.

– We successfully synthesized the expected BTs for several representative robotic
missions within 1 hour, which indicates the effectiveness of our method.

This paper is organized as follows. Some backgrounds are provided in Sec-
tion 2. The problem formulation and the proposed approach are presented in
Section 3 and Section 4, respectively. The demonstration result is shown in
Section 5. The overview for the existing work is given in Section 6. Finally,
Section 7 concludes the paper.

2 Background

This section first briefly introduces Behavior Trees with an example that used
throughout the paper. Then, we provide some necessary prerequisite knowledge
about Linear Temporal Logic and Communicating Sequential Processes.

2.1 Behavior Trees

Behavior Trees (BTs) [15] are the hierarchical trees that control the agent’s
decision-making behavior. Figure 1 shows a BT example that controls the robot
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to pick up a cube from a specific position. The leaf nodes of BTs are execution
nodes that can be classified into action nodes and condition nodes. Apart from
those execution nodes, there are four types of control flow nodes that include
sequences nodes, fallbacks nodes, parallel nodes, and decorator nodes. In this work,
we mainly focus on the usage of sequences nodes and fallbacks nodes. More details
about them can be found below:

– action nodes: The gray and rectangle-shaped ones, like GotoPos, Pickup.
It may return one of the three statuses: success (the action is completed),
failure (the action is impossible to complete), running (the action is not
completed yet).

– condition nodes: The ellipse-shaped ones, like Picked, AtPos. It may only
return success (the condition holds) or failure (the condition does not hold).

– sequences nodes: It is represented as the symbol →. It returns success when
all of its children return success in an order from left to right; returns fail-
ure/running as soon as one of its children returns failure/running.

– fallbacks nodes: It is represented as the symbol ?. It returns failure when
all of its children return failure in an order from left to right; returns suc-
cess/running as soon as one of its children returns success/running.
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Fig. 1. BT example.

The execution of BTs starts from the root and infinitely delivers ticks to
its children at a particular frequency. Ticks can be seen as a signal to identify
which node is executable. We take one possible execution of the BT example for
illustrations, which requires that the robot firstly goes to the specific position,
then picks up a cube. The node’s execution order w.r.t. ticks is labeled, as
shown in Figure 1. We assume that the conditions Picked and AtPos don’t hold
initially. In the first tick, the condition node Picked is ticked but returns failure,
then the condition node AtPos is ticked due to the functionality of these control
flow nodes. AtPos also returns failure and the action node GotoPos is ticked and
returns running. The status running is propagated to the root since all the control
flow nodes will return running if one of its children returns running. Similar to
the first tick, the action node GotoPos is ticked again but returns success in
the second tick. During the second tick, the action node Pickup is also ticked
since the first child of the sequences node returns success and Pickup returns
success. The success of Pickup means the condition Picked holds. Therefore, the
condition node Picked always returns success in the third and following ticks.
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2.2 Linear Temporal Logic

Linear Temporal Logic (LTL) is widely used to describe specifications about
long-term goals, like safety and liveness. It can be used to specify the BTs’
behaviors [3]. The basic elements of LTL include a set of atomic proposition
p ∈ P , the propositional logic operators ¬ (negation), ∨ (disjunction), and
∧ (conjunction), and several temporal logic operators X (next), U (until), G
(always), and F (eventually).

ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕ U ϕ | Gϕ | Fϕ

For example, the previous BT example controls the robot to finally pick up a cube
can be expressed as the LTL specification F p, wherein p denotes “Picked holds”.
We only mentioned those notions used in this paper, and more details about LTL
can be found in [1].

2.3 Communicating Sequential Processes

Communicating Sequential Processes, or CSP [13] is a kind of language for de-
scribing an interaction system consisting of processes. For convenience, we use
the lower case letters (a, b, ...) to represent events in the process and the up-
per case letters (P, Q, ...) to represent processes. The following provides part of
the standard semantics, and more details about the completed semantics can be
found in [13].

P ::= Skip | a→ P | P; P | P � P

We take some expressions used in this paper as examples:

– Skip is a normal terminated process that does nothing.
– a→ P executes the event a then behaves like the process P. If a is additionally

decorated by [Guard] a {Program}, it requires that a can only be executed
when the condition Guard satisfies and the effect of executing a is represented
by Program.

– P1; P2 executes the process P1 first, then executes the process P2.
– P1 � P2 executes the process P1 or P2, wherein which process executed

depends on the external environment.

The following CSP model represents all executions in the form of a∗b. The whole
process may continuously executes the event a due to the process P’s recursive
behavior or executes the event b once and terminates immediately due to Skip.

P = (a→ P) � (b→ Skip);

There are many verifiers to support the verification of CSP model w.r.t. the
LTL specification ϕ, like PAT [24] and FDR [11], to name a few.
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3 Problem Formulation

Before carrying out our formal verification based synthesis method, there are
some prerequisites: the BTs’ construction grammar, the action nodes’ function
descriptions and the LTL specification. The BTs’ construction grammar is shown
in Figure 2, wherein the action nodes {act1, .., actN} and the condition nodes
{cond1, .., condM} are regarded as the terminal symbols. The grammar will be
used to carry a grammar-based MCTS to generate plenty of candidate BTs.

Root ::= ( ? Root Root ) | ( → Root Root )

| ( ? C Root ) | ( → C Root ) | A

A ::= act1 | act2 | ... | actN
C ::= cond1 | cond2 | ... | condM

Fig. 2. The BTs’ construction grammar.

As for the action nodes’ function descriptions, we noticed that the interac-
tion between BTs and unpredictable environments is actually reflected in the
effect of actions {act1, .., actN} on conditions {cond1, .., condM}. Therefore, we
regard the condition set as a proposition set Σ, and represent the interaction
snapshot between BTs and environments as a state set S = 2Σ . The function of
an action can be represented in the form of s1

a−→ s2, wherein s1, s2 ∈ S and
a ∈ {act1, .., actN}. For each action node, we clarify its function as shown in
Table 1, which will be used to facilitate the CSP modelling for BTs.

Table 1. The function descriptions of action nodes.

Action Requirement Result

.. ... ...

acti condj, ..., ¬condk condp, ..., ¬condq

.. ... ...

GotoPos AtPos

Pickup AtPos, ¬Picked Picked

We use cond and ¬cond to represent whether the condition holds or not,
respectively. For each action node acti, Requirement is the pre-condition
needed to be satisfied before executing acti, i.e., s1 |= condj ∧ ... ∧ ¬condk;
while Result is the post-condition caused by successfully executing acti, i.e.,
s2 |= condp∧ ...∧¬condq. For example, the execution of GotoPos is without any
requirements, but results in AtPos to be hold; the execution of Pickup requires
that AtPos holds while Picked does not hold, but Picked will hold after the
success execution of Pickup.
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Goal: Given the BTs’ construction grammar, the function descriptions of
action nodes, and the LTL specification ϕ, our goal is to synthesize the expected
BT whose behavior satisfies the specification ϕ.

4 Proposed Approach
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Fig. 3. The formal verification based synthesis framework.

The formal verification based synthesis framework is presented in Figure 3,
which consists of two modules: Grammar-based MCTS and CSP Modelling and
Verification. In this framework, we conduct a Monte Carlo Tree Search pro-
cess based on the grammar rules shown in Figure 2, which starts from the non-
terminal symbol Root and continually expands non-terminal symbols to obtain
the candidate BTs. During the simulation phase, the candidate BT will be trans-
formed into CSP model with the nodes’ function embedding, then the model
w.r.t. LTL specification ϕ will be checked by the verifier. The verification result
will be utilized to provide feedback for guiding the search process. This search
process will repeat until the expected BT has been found or the time is running
out. In the following subsections, we will first focus on the verification module,
then combine it with the search module.

4.1 CSP Modelling and Verification

Given the candidate BT B and the nodes’ function F , we construct the corre-
sponded CSP modelM in a bottom-up manner as shown in Algorithm 1. Con-
sidering that each node with its children in a BT is corresponded to a sub-BT,
we use a mapping to store the corresponding CSP model for each node/sub-BT
(line 1). During the modelling process, we first construct CSP model for each
leaf node w.r.t. F (line 2-5), then focus on the structure building for the control
node (line 6-14). For each control node whose CSP model is not defined but its
child nodes are defined (line 8), we compose these child nodes together based on
the type of control nodes to construct the control node’s CSP model (line 9-13).
Finally, we select the root’s CSP model to return (line 15-17). The corresponding
CSP model for the BT in Figure 1 is presented in Figure 4. We next describe
the Function Embedding and the Structure Building for Figure 4 in detail.
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Algorithm 1: Modelling(B, F)
Require: The candidate behavior tree B and the function information of action

nodes F = {(require1, action1, result1), ..., (requiren, actionn, resultn)}.
Ensure: The corresponding CSP modelM for B.
1: E ← {} // Mapping each node to a CSP model
2: // Function Embedding
3: for each leaf node n in B do
4: E [n]← functionEmbedding(n,F)
5: end for
6: // Structure Building
7: while exist undefined control node in B w.r.t. E do
8: (n1, n2, n)← select(B, E) // n1,n2 are defined, while the parent n is not.
9: if n is → then
10: E [n]← composeSequence(n1, n2)
11: else
12: E [n]← composeFallback(n1, n2)
13: end if
14: end while
15: // The Final Model w.r.t. Root
16: M← E [selectRoot(B)]
17: return M

1 var a1, a2; // a1/a2 represents whether GotoPos/Pickup returns success
2 var c1, c2; // c1/c2 represents whether Picked/AtPos returns success
3 var n1=0, n2=0; // n1/n2 records the number of running times an action keeps
4 #define N 2; // N times running must eventually leads to success
5
6 BT = ([c1==0] picked_f -> ([c2==0] atpos_f ->
7 (( [n1<N] gotopos_r {n1++;a1=0;c2=0} -> BT)
8 []
9 ([n1==0] gotopos_f {n1=0;a1=0;c2=0} -> BT)

10 []
11 ([n1<=N] gotopos_s {n1=0;a1=1;c2=1} ->
12 // ---------- the modelling for terminals ---------- //
13 ([n2<N&&c1==0&&c2==1] pickup_r {n2++;a2=0;c1=0} -> BT
14 []
15 [n2==0&&(c1==1||c2==0)] pickup_f {n2=0;a2=0;c1=0} -> BT
16 []
17 [n2<=N&&c1==0&&c2==1] pickup_s {n2=0;a2=1;c1=1} -> BT)
18 // -------- the modelling for non-terminals -------- //
19 // Unknown -> BT
20 )))[]
21 ([c2==1] atpos_s ->
22 ([n2<N&&c1==0&&c2==1] pickup_r {n2++;a2=0;c1=0} -> BT
23 []
24 [n2==0&&(c1==1||c2==0)] pickup_f {n2=0;a2=0;c1=0} -> BT
25 []
26 [n2<=N&&c1==0&&c2==1] pickup_s {n2=0;a2=1;c1=1} -> BT)
27 // Unknown -> BT
28 ))[]
29 ([c1==1] picked_s -> BT);
30
31 P = (set_c1_0{c1=0} -> set_c2_0{c2=0} -> Skip); BT;
32
33 #assert P |= F pickup_s; // check whether the cube is finally picked up?

Fig. 4. The CSP model for the BT example in Figure 1, wherein [] represents the exter-
nal choice � and // represents comments. (1) if picked holds, the process is re-executed
(line 29); (2) if picked doesn’t hold but atpos holds, pickup is executed (line 22-26);
(3) if both picked and atpos don’t hold, gotopos and pickup are executed (line 7-17).
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Function Embedding First, we present CSP model without the function em-
bedding for each leaf node. Note that, a single leaf node can be also regarded as
a BT. For example, the model for a condition node condi is like

BT = (condi_f→ BT) � (condi_s→ BT)

It captures the two possible return statuses of condi by the external choice oper-
ator� , wherein condi_f and condi_s are the events that mean the node returns
failure and success, respectively. Besides, this node will be infinitely ticked at
a particular frequency, which has been depicted as the recursion structure. The
action node acti can be constructed in the similar way by adding acti_r for
the status running as shown below.

BT = (acti_r→ BT) � (acti_f→ BT) � (acti_s→ BT)

Second, we consider to add the function embedding into the model. The key
point is using a flag (ci for condi and ai for acti) to indicate which status the
execution node returns (1 for success and 0 for others), which will be further
used to guide other nodes’ executions. The function embedding of events in CSP
model is presented in the following form

[... ... ...]︸ ︷︷ ︸
Guard

Event {... ... ...}︸ ︷︷ ︸
Program

, wherein Guard is a boolean expression to represent the pre-condition needed
for Event to take, and Program is the detailed description for the effect of Event
taken. For each condition node condi, its related events will be depicted by

[ci==0] condi_f { } [ci==1] condi_s { }

The value of ci depends on the environment initialization as shown in line 31
of Figure 4 that assumes there is no condition holds initially. Besides, the value
of ci can be also altered by the execution of action nodes as shown below.

For illustrations, we assume the requirement for acti is condj ∧ ¬condk,
and the result for acti is condp, its related events will be depicted by

[cj==1 && ck==0] acti_r {cp=0; ai=0}

[cj==0 || ck==1] acti_f {cp=0; ai=0}

[cj==1 && ck==0] acti_s {cp=1; ai=1}

Besides, we require N times running of an action eventually leads to the status
success and use ni to record the number of running times an action has kept.
Therefore, the events above will be additionally decorated by

[(cj==1 && ck==0) && ni< N] acti_r {(cp=0; ai=0) ; ni++}

[(cj==0 || ck==1) && ni==0] acti_f {(cp=0; ai=0)}

[(cj==1 && ck==0) && ni≤ N] acti_s {(cp=1; ai=1) ; ni=0}

After the function embedding for each leaf node, we next focus on the struc-
ture building for control nodes.
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Structure Building We consider more complex BTs that contain control nodes
(Fallbacks or Sequences) other than the single node. We construct CSP model in
a bottom-up manner by considering the functionality of control nodes described
in Section 2.1. We take the BT in Figure 1 as an example for the whole modelling
process. We first construct the model for each leaf node as shown below and
ignore those details of Guard and Program for clarity.

BT1 = ([...] picked_f {...} → BT1) � ([...] picked_s {...} → BT1)

BT2 = ([...] atpos_f {...} → BT2) � ([...] atpos_s {...} → BT2)

BT3 = ([...] gotopos_r {...} → BT3) � ([...] gotopos_f {...} → BT3)

� ([...] gotopos_s {...} → BT3)

BT4 = ([...] pickup_r {...} → BT4) � ([...] pickup_f {...} → BT4)

� ([...] pickup_s {...} → BT4)

Next, we consider the node ? associated with AtPos and GotoPos, which
requires that the execution of GotoPos only happened when AtPos doesn’t hold.
Therefore, we deconstruct BT3 and compose it with BT2 to reconstruct a new
model BT23. BT23 consists with the modelling shown in line 6-11 of Figure 4.

BT23 = ([...] atpos_f {...} → ( ([...] gotopos_r {...} → BT23)

� ([...] gotopos_f {...} → BT23)

� ([...] gotopos_s {...} → BT23))

) � ([...] atpos_s {...} → BT23)

After that, we consider the node → associated with the left subtree and
Pickup. It required that the execution of Pickup only happened under two cases:
(1) atpos_s of the left subtree taken (corresponded to line 21-26 of Figure 4);
(2) both atpos_f and gotopos_s of the left subtree taken (corresponded to
line 11-17). The model’s construction process is similar to the previous one de-
scribed. Finally, we tackle with the modelling of the node ? associated with
Picked and the right subtree based on the functionality of Fallbacks, as shown
in Figure 4. Intuitively, we automatically construct CSP model in a bottom-up
manner based on the type of control nodes and the event each child nodes takes.

Verification After the scene-customized function embedding for leaf nodes and
the structure building for control nodes, we construct a CSP model from the
given BT. Then, we can verify the correctness of CSP model w.r.t. specifications
(line 33, i.e. the robot finally picks up a cube) by the verifier PAT [24]. The
final verification result shows this CSP model is truly valid w.r.t. specifications,
which implies the behavior of BT satisfies such specification. The verifier can
also provide a counter-example trace if the final verification result shows invalid.
For example, let the specification be that the robot never picks up a cube, i.e.,
G ¬pickup_s, the verifier may return a counter-example trace like picked_f;
atpos_f; gotopos_s; pickup_s. The counter-example provided by the verifier
will be useful in the following search process.
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4.2 Grammar-based MCTS

We instantiate the grammar-based search as a Monte Carlo Tree Search (MCTS)
process. Starting from the non-terminal symbol Root as the initial candidate BT,
MCTS consists of four phases:

– selection phase: it selects the most promising candidate BT based on the
current exploration.

– expansion phase: it expands the selected BT based on the given grammar
shown in Figure 2 to generate more candidate BTs.

– simulation phase: it evaluates the candidate BT based on the feedback pro-
vided by the verifier.

– backpropagation phase: it updates the information of BTs that have been
explored. After backpropagation phase, a new round of search begins.

The whole process is presented in Figure 5. The search process will repeat until
the expected BT has been found or the time is running out.

④backpropagation

-->

?

...

?

cond

①selection

②exp
ans

ion

②expansio
n

②expansion

-->

...

③simulation
...

...

④backpropagation

③simulation

RootRoot

Root

RootC

RootRoot

Root

C

?
Verifier

Verifier

Fig. 5. Grammar-based MCTS.

Instead of applying simulators to do the simulation phase, our method utilizes
the verifier to evaluate the BT and provides feedback. The main consideration is
that, the feedback provided by robotic simulators is not timely enough since the
dynamic interaction and reaction with environments is time-consuming. Com-
pared with robotic simulators, the verifier can provide timely feedback in a static
manner without the interaction. Therefore, we invoke the verifier to check the
candidate BT and calculate its value as shown in Figure 6.
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Fig. 6. The evaluation of candidate BTs.
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We first classify candidate BTs’ models into two categories: determined one
and non-determined one, based on the existence and reachability of non-terminals.
After that, we invoke the verifier to check the model’s correctness w.r.t. specifica-
tions and assign different values for candidate BTs according to the verification
result: (1) the value is -∞ when the determined model failed to pass the verifi-
cation; (2) the value is calculated as v when the non-determined model failed to
pass the verification; (3) the value is ∞ when the model passed the verification,
which means the expected BT is found. We next describe them in detail.

Type Classification During the grammar-based search process, we may get
plenty of candidate BTs with or without non-terminals. For the candidate BT
without non-terminals, it’s undoubtedly classified into the category of deter-
mined models; while for the candidate BT with non-terminals, its category de-
pends on the reachability of non-terminals.

AtPos

Picked

GotoPos

Pickup

?

-->

?

determined

AtPos

Picked

GotoPos

A

?

-->

?

non-determined

Fig. 7. The candidate BTs.

For example, the BT in Figure 1 might be derived from a candidate BT with
non-terminals that only has difference in the rightmost as shown in Figure 7,
wherein A is a non-terminal symbol. For modelling candidate BTs with non-
terminals, we treat all the non-terminal symbols as the symbol Unknown, which
represents the behavior of this node is unknown and full of possibility. Then,
the corresponding CSP model can be obtained by replacing the whole part of
Pickup in Figure 4 with Unknown → BT (line 19 and line 27 of Figure 4). Intu-
itively, the reachable of Unknown in CSP model, i.e., G ¬ Unknown is not valid,
means there exist the possibility to satisfy any specifications, even it doesn’t
yet. Conversely, the unreachable means that the behavior of BT has been de-
termined. Therefore, we classify those candidate BTs with non-terminals into
different categories based on the reachability checking.

The verification for determined models For the model without Unknown,
or the model wherein Unknown is unreachable, we invoke the verifier to check
whether it satisfies specifications. If the verifier returns valid, then we found
the expected BT and stopped the search; otherwise, the value of this model’s
corresponding candidate BT is set as -∞, which implies this candidate BT will
never be explored again, and we abandon it to prune the search space.
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The verification for non-determined models For the model wherein Unknown
is reachable, we also invoke the verifier to check the model’s correctness w.r.t.
specification ϕ. If the verifier returns valid, then we found the expected BT and
stopped the search; otherwise, we got a counter-example like event1; event2;
...; eventN . Next we evaluate the value in the following four aspects, wherein
the first two focus on the BT itself, the last two focus on the specification.

– V1: we evaluated the ratio of terminal symbols in the candidate BT to
investigate the model’s determinacy.

– V2: we evaluated the expansion way that results in the current candidate
BT to investigate its influence.

– V3: we evaluated the relevance between the specification and the candidate
BT from the perspective of literal comparison.

– V4: we evaluated the relevance between the specification and the candidate
BT from the perspective of verification result.

Given the action nodes {GotoPos, Pickup}, the condition nodes {Picked,
AtPos}, the function descriptions shown in Table 1, and the specification ϕ =
F picked_s, we take the candidate BT with non-terminals in Figure 7 as an
example. We depict those values one by one: V1 is calculated as the ratio of
the already existing terminals to all symbols in the BT like 3

4 = 0.75, while V2

evaluates the influence of this BT’s expansion manners in the expansion phase,
which can be classified into three different cases:

– key terminal expansion: the BT is expanded based on a non-terminal
to terminal rules, wherein the new terminal symbol is related to the exist-
ing terminals w.r.t. nodes’ function. For example, the case that ( ? AtPos
GotoPos ) is derived from ( ? AtPos A ), wherein AtPos is entangled in the
function of GotoPos as shown in Table 1.

– non-terminal expansion: the BT is expanded based on a non-terminal to
non-terminal rules like Root → A.

– other terminal expansion: the BT is expanded based on a non-terminal
to terminal rules that the new symbol is not related to the existing terminals
w.r.t. nodes’ function.

We prefer key terminal expansion, followed by non-terminal expan-
sion, and finally other terminal expansion. The V2 value of three cases is
set as 0.9, 0.6, 0.3, respectively.

As for the other two values, the literal relevance value V3 is calculated as
the proportion of the current occurring terminals in ϕ like 1

1 = 1 (here ϕ only
contains Picked and Picked exists); while the verification relevance value V4

measures the complexity of counter-example. It’s worth noting that the longer
the counter-example trace generated, the closer the behavior of the candidate BT
may be likely to ϕ. For convenience, we project the length of counter-example
(event1; event2; ...; eventN ) to a value by the formula V4 = lnN/(lnN +2).
The final value V is the sum of those four values. Based on the value feedback,
we continue advance the later backpropagation phase and search in a new round.
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Optimizations To improve the efficiency, we optimize the search process in two
aspects. The first one is to make MCTS parallelizing. Note that, for the candidate
BTs collected by the expansion phase, we usually do the simulation phase for
each candidate BT at a time. However, the simulation phase can be parallelizing.
Here we take a leaf parallelization method [23], which invokes multiple threads
to deal with those candidate BTs generated by the expansion phase in parallel,
then collects all simulation values to propagate backwards through the tree by
one single thread. This parallelization can effectively reduce the time required for
the simulation phase. The second one is to utilize the nodes’ function to make an
early checking for the candidate BTs before invoking the verifier. For example,
the candidate BT ( ? Picked ( → AtPos GotoPos ) Root ) can be pruned in
advance although the non-terminal Root is reachable. The reason is that the
success of AtPos relies on GotoPos under the function descriptions shown in
Table 1. However, in this case, the failure of AtPos will skip the execution of
AtPos, which makes the status of AtPos to be always failure. Therefore, we can
deduct that there exists a redundant structure in view of BT’s execution and
we can prune it for the simplicity of the expected synthesized BT. This pruning
can effectively reduce the search space without invoking the verifier.

5 Demonstration
We have implemented our method as a prototype in Python and applied it on
several representative robotic missions. To demonstrate its effectiveness and effi-
ciency, we have conducted the following experiments: (1) the comparison experi-
ment between our framework (MCTS with verifier) and the framework instan-
tiated as MCTS with a simple simulator used by [16] (MCTS with simulator);
(2) the ablation experiment for the value designed in Section 4.2.

5.1 Experimental Setup

We collect several representative robotic missions which are shown in Table 3,
wherein the first column shows the names of missions and the second column
gives a short description for missions. The detailed information about those
missions is provided in the website4. The time threshold for synthesis is 1 hour.
All the experiments were carried out on a machine with an Intel Core i9 processor
(3.6 GHz, 8 cores) and 8GB of RAM, and the operating system is Ubuntu 22.04.

5.2 Comparison Experiment

Case Study We take the mission Alarm as an example. The mission requires
the robot to react with the unpredictable environment factor Alarm. The robot
may navigate to the position A (GotoA) to complete TaskA (DoTaskA) if the
alarm occurs or navigate to the position B (GotoB) to complete TaskB (DoTaskB)
otherwise. Given the action nodes {GotoA, GotoB, DoTaskA, DoTaskB} and the
condition ndoes {Alarm, AtA, AtB, TaskFinishedA, TaskFinishedB}, the seman-
tics for each action node is provided in Table 2.

4 https://github.com/FM4BT/Synthesizer4BT
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Table 2. Nodes’ function for mission Alarm.

Action Requirement Result

GotoA AtA, ¬AtB

GotoB ¬AtA, AtB

DoTaskA AtA, Alarm, ¬TaskFinishedA TaskFinishedA

DoTaskB AtB, ¬Alarm, ¬TaskFinishedB TaskFinishedB

The specification ϕ is presented as follows. The first part declares the existence
of an alarm and specifies that the robot needs to complete at least one of the
two tasks. The second part specifies that whenever the alarm occurs, the robot
is forbidden to complete TaskB until the alarm frees. The third one is similar.

F (Alarm_s ∨ Alarm_f) ∧ F (DoTaskA_s ∨ DoTaskB_s)

∧ G (Alarm_s→ ((¬DoTaskB_s U Alarm_f) ∨ G ¬DoTaskB_s))

∧ G (Alarm_f→ ((¬DoTaskA_s U Alarm_s) ∨ G ¬DoTaskA_s))
Our method (MCTS with verifier) successfully synthesized the expected BT
as shown in the left of Figure 8, while MCTS with simulator didn’t. After an
hour of learning, it obtained the synthesized BT as presented in the right of
Figure 8. The result BT failed to complete the mission.

Alarm

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

MCTS with verifier MCTS with simulator

Alarm GotoA

-->

DoTaskA

?

GotoB

DoTaskB

?

Alarm GotoB DoTaskA

AtB DoTaskB
Task

FinishedA

?

C Root

-->

Task
FinishedB

?

?

Fig. 8. The synthesis result for the mission Alarm.

Overall Results The full experimental results are presented in Table 3. The
third column records the time-cost of our method (MCTS with verifier) to syn-
thesize the expected BT (�) for each mission. The fifth column represents that
no expected BT is synthesized by MCTS with simulator in one hour (ë 3600s).
The latter lacks the evaluation and pruning of non-determined models, as well
as the timely feedback from simulators. The detailed synthesis information can
be found in the aforementioned website. Note that, compared with the other
missions, the significant time overhead increase for the mission Alarm is mainly
due to the difficulty of determining the position where the node Alarm should
locate. The forth column represents the number of pruned candidate BTs by
the verifier, and the corresponding proportion of these pruned ones in the total
verified ones is labeled. There is about 11.6% of the candidate BTs are pruned
in average, whose number of leaf nodes is mostly no more than 3. The result
implies that we avoid a plenty of meaningless expansions in the early stage.
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Table 3. The description and experimental result of missions.

Mission Description MCTS with verifier MCTS with simulator
Result #Pruned Result

Charge recharge when the battery
is low � 174s 79(15.3%) ë 3600s

Patrol1
visit posA, posB , posC

without an order � 124s 57(14.8%) ë 3600s

Patrol2
visit posA, posB , posC

in order � 182s 78(14.0%) ë 3600s

Pickup pick up a cube from posA
and place it at posB

� 1102s 313(9.1%) ë 3600s

Alarm do different tasks depending
on the status of alarm � 2535s 353(4.9%) ë 3600s

5.3 Ablation Experiment

Besides, we also investigate the rationality of the value design (V1, V2, V3 and
V4) in Section 4.2. By disabling the four values individually, we found that the
final synthesis time-cost increased to some extent, or even timed out in 16 cases
out of 20, as shown in Figure 9. The result implies that the rationality of the
value design in guiding the search process.

Charge
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no-V2
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Fig. 9. The speedup w.r.t. ALL for each mission and ALL includes all four values.

5.4 Discussion

We are currently primarily focused on BTs composed of only action, condition,
sequences, and fallbacks nodes. The main bottleneck of our method lies in two
aspects. (1) How to design the suitable formal specification to depict the behavior
of BTs? This problem can be relieved by utilizing large language models to
translate natural language to temporal logics as [9] does. This is not a focal
point of our work. (2) How to improve the efficiency of finding the expected
BT? This problem can be relieved by designing more effective heuristic search
strategy, which is better to customize the heuristic search based on the specific
scenario. In this work, we design a general search strategy and demonstrated its
effectiveness in the experiment.
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6 Related Work

There are many works dedicated to automatically designing and constructing
BTs [15]. For example, QL-BT [10] applied reinforcement learning (RL) methods
to decide the child nodes’ execution order and further optimize early behavior
tree prototypes. Banerjee [2] used RL methods to obtain control policies, then
converted it into the expected BTs, while Scheide et al. [29] utilized Monte Carlo
DAG Search to learn BTs based on the formal grammar. Besides, the evolution-
inspired learning is another choice for synthesizing BTs [18, 25, 21, 16], which
evolves BTs by the generic programming. However, for the above methods, the
burden of simulation time for learning and evolving are usually intractable and
the synthesized BT just tends to rather than guarantees to meet the specification.

Apart from those learning-based synthesis methods, there also exist some
planning-based ones. Colledanchise et al. [5] and Cai et al. [4] synthesized BTs
based on the idea of back chaining, which iteratively extended the action to meet
the goal condition. Starting from the formal specifications, Tumova et al. [32]
constructed an I/O automaton that is the maximally satisfying discrete control
strategy w.r.t. State/Event Linear Temporal Logic, then converted it into BTs.
Colledanchise et al. [6] and Tadewos [31] et al. taken a divide-and-conquer way
to synthesize BTs whose missions are expressed in Fragmented-Linear Temporal
Logic. For the method’s effectiveness, the expressiveness of those synthesized
BTs is usually sacrificed by the limited form of specifications. Compared with
that, this work does not impose any restrictions on the specification form.

As regards the verification method for BTs, Biggar et al. [3] provided a frame-
work for checking whether the given BT’s behavior satisfies LTL specifications.
Henn et al. [12] utilized Linear Constrained Horn Clauses to verify the BT’s
safety properties. Serbinowski et al. [30] translated BTs into nuXmv models for
verification. In this work, we model the behavior of BTs as CSP models and
utilize the verifier to check its correctness.

7 Conclusion

In this paper, we proposed a formal verification based synthesis method to auto-
matically construct BTs, which combines Monte Carlo Tree Search with a CSP
modelling and verification method. In this method, we innovatively utilized the
verifier to complete the simulation phase in MCTS and make the search space
pruning based on verification results. The application of our method on several
representative robotic missions indicates its promising.

The future work lies in several directions: (1) further exploiting the counter-
example traces provided by the verifier, like analyzing the invalidness reason, to
guide the search and facilitate the pruning; (2) supporting the modelling for more
control node types, like Parallel, Decorator, Memorized Sequences, Memorized
Fallbacks, and so on; (3) utilizing the concurrence feature of CSP models to
verify the robotic mission involved with multi-BTs.
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