
Towards Formal Interfaces for Web Services with
Transactions ?

Zhenbang Chen, Ji Wang, Wei Dong, and Zhichang Qi

National Laboratory for Parallel and Distributed Processing,
Changsha 410073, China

{z.b.chen,jiwang,dong.wei}@mail.edu.cn

Abstract. The accuracy of interface description is very important to service
composition and dynamic selection of service-oriented systems. It is desirable
to describe Web service formally so as to improve the ability of service orches-
tration. This paper presents a formal interface theory for specifying Web ser-
vice by extending the existing with the ability to model interface behaviour with
transactions at the levels of signature, conversation and protocol. Signature in-
terface and conversation interface model the static invocation relations in Web
service interfaces, and protocol interface describes the temporal invocation in-
formation. A formal semantics of protocol interface is presented. Based on the
semantics, the protocol interface can be transformed into a Labeled Transition
System (LTS). Additionally, the compatibility and substitutivity relation condi-
tions between Web services are also proposed.

Key words: Web service, Interface theory, Composition, Transaction

1 Introduction

Service orientation is a new trend in software engineering [1]. It makes the separa-
tion of service provider and requester possible, and allows the run-time composition of
services. Meanwhile, it is a challenge to understand and ensure a high confidence of
service-oriented software systems.

Web service is emerging as a standard framework for service-oriented computing.
Business integration raises the need for Web service composition languages such as
BPEL4WS (BPEL) [2]. There are many works on formalization and verification for
Web service composition languages, and their main aim is to ensure the correctness of
Web service composition.

In service-oriented architecture, service providers publish the service interface de-
scriptions to the service registry. It is important to ensure the interface accuracy for
service-oriented computing. As a formal foundation of component-based design, de

? Supported by the National Natural Science Foundation of China under Grant No.60233020,
60303013, 90612009; the National High-Tech Research and Development Plan of China under
Grant No.2005AA113130; the National Grand Fundamental Research 973 Program of China
under Grant No.2005CB321802; Program for New Century Excellent Talents in University
under Grant No.NCET-04-0996.

Alfaro and Henzinger [3] proposed a theory of interface automata for specifying the
component interfaces. Recently, Beyer et al. [4] presented a Web service interface de-
scription language, which can describe the Web service interfaces in three levels, i.e.
signature, consistency and protocol. However, transactions are not considered in the
existing interface theories, though it is one of the essential features in distributed com-
puting such as Web service systems. How to describe transaction information of Web
service is a problem. Web service-based transactions differ from traditional transactions
in that they execute over long periods, require commitments to the transactions to be
“negotiated” at runtime, and isolation levels must be relaxed [5].

The main contribution of this paper is to extend the formalism of Web service inter-
faces proposed in [4] for describing the transaction information in all three levels of sig-
nature, conversation and protocol. In each level, we separate the transaction description
from the normal behaviour description. This separation makes the transaction informa-
tion of Web service interfaces to be easier to describe and maintain. The compatibility
and substitutivity relation conditions of the Web service interfaces are proposed for
supporting Web service system development.

The rest of this paper is organized as follows. Section 2 presents the framework of
the interface theory for Web services with transactions, including the signature inter-
face, conversation interface and protocol interface. As a key element, Section 3 gives
a complete semantics of protocol interface. Section 4 exemplifies the theory by a case
study. In Section 5, related work is reviewed and compared with ours. Section 6 con-
cludes the paper and presents some future work.

2 Web Service Interface Theory

A Web service interface description contains some method declarations, and clients can
use the functionalities of Web services through method calls. A Web service may pro-
vide or request some methods which may return some different values. An action is one
case of a method call. From the perspective of action, the interface behaviour of Web
service contains three parts. The first part is the normal behaviour of action invocations.
If an exception action is invoked and completes, it will be handled by its correspond-
ing fault handling behaviour, which is the second part of the interface behaviour. If an
exception action can invoke some successful actions before the exception occurrence,
the successful actions should be compensated by the corresponding compensation be-
haviour, which is the third part of the interface behaviour.

There are different detailed interface descriptions from Web service providers. For
this reason, we propose the interface theory for describing the transaction information
at three different abstract levels of signature, conversation and protocol. Inspired by the
ideas of Aspect-Oriented Programming (AOP) [6], we separate the descriptions of fault
handling and compensation behaviour from those of normal behaviour in the interface
description. In the interface semantics, the fault handling and compensation behaviour
can be weaved with the normal behaviour to describe the transaction information.

Let M be a finite set of Web methods, O be a finite set of outcomes, and dom(f)

denote the domain of the function f . Each level of the interface theory will be presented
as follows.

Definition 1 (Signature Interface, SI). A signature interfaceP = (A, S, SC , SF), where
A ⊆M × O is a set of actions that can appear in P , S : A → 2A is a partial function
that assigns to an action a a set of actions that can be invoked by a, SC : A → 2A is a
partial function that assigns to an action a a set of actions that can be invoked by the
compensation for a, SF : A→ 2A is a partial function that assigns to an action a a set
of actions that can be invoked by the fault handling for a, and dom(SC)∩ dom(SF) = ∅,
dom(SC) ∪ dom(SF) = dom(S).

Signature interface describes the direct invocation relation of Web service inter-
faces. An action may have different types. An action a∈A is a supported action if S(a)
is defined. A Web method m∈M is a supported method if there exists a supported ac-
tion a = 〈m, o〉. An action a is a success action if SC(a) is defined. An action a is an
exception action if SF (a) is defined. An action a is a required action if it can be in-
voked by a supported action or compensation or fault handling, which can be expressed
by the formula defined as follows:

required(a′) = (∃a ∈ dom(S). a′ ∈ S(a)) ∨ (∃a ∈ dom(SC). a′ ∈ SC(a))∨
(∃a ∈ dom(SF). a′ ∈ SF (a)).

Service registries often require service providers to publish solid interface descrip-
tions. Well-formedness can be used to assure the integrity. A signature interface is
well-formed if the following conditions hold: every required action whose method is
a supported method is a supported action, and no exception action can be invoked in
compensation or fault handling.

Given two Web service interfaces, it is desirable to check whether they can cooper-
ate properly. First, two Web services cannot support the same actions. Second, the new
Web service interface, which is composed of them, should be well-formed. Formally,
given two signature interfaces P1 = (A1,S1,SC1,SF 1) and P2 = (A2,S2,SC2,SF 2),
they are compatible (denoted by comp(P1,P2)) if the following conditions are satisfied:
dom(S1) ∩ dom(S2) = ∅, and Pc = P1 ∪P2 = (A1 ∪A2,S1 ∪ S2,SC1 ∪ SC2,SF 1 ∪ SF 2)

is well-formed. If two signature interfaces P1 and P2 are compatible, their composition
(denoted by P1 ‖ P2) is Pc. The composition operator is commutative and associative.

To enable top-down design, it is desirable to replace a Web service in a system (en-
vironment) with a new Web service without affecting the running of the system. After
replacement, all parts of the system can still cooperate properly as before. Intuitively,
the supported, success and exception actions are the guarantees of the Web service, and
the required actions are the assumptions of the environment. The replacing Web service
should guarantee more and assume fewer than the replaced Web service.

Given two signature interfaces P1 = (A1,S1,SC1,SF 1) and P2 = (A2,S2,SC2,SF 2),
P2 refines P1 (P2 4 P1) if the following conditions are satisfied:for every a ∈ A, if P1

supports a, then P2 supports a; for every a ∈ A, if a is a success action in P1, then a
is a success action in P2; for every a ∈ A, if a is an exception action in P1, then a is
an exception action in P2; for every a, a′ ∈ A, and a ∈ dom(S1), if a′ ∈ ζ2(a), where
ζ2 ∈ {S2,SC2,SF 2}, then a′ ∈ ζ1(a); for every unsupported Web method m ∈ M in
P2, if 〈m, o〉 is a required action in P2, then 〈m, o〉 is a required action in P1.

The first three conditions ensure that the replacing Web service guarantees every ac-
tion guaranteed by the replaced one. The last two conditions ensure that every required
action in P2 is required by P1, and they describe that P2 assumes fewer actions which

are supported by environment than P1. Given three signature interfaces P1, P2, and P3,
if comp(P1,P3), comp(P2,P3), and P2 4 P1, then P2 ‖ P3 4 P1 ‖ P3.

An action may invoke different action sets in different conditions. Signature in-
terface cannot describe this feature. Conversation interface is proposed for specifying
different cases of action invocation. A conversation is a set of actions that are invoked
together. Propositional formulae are used to represent different conversations. The set
of conversation expressions over an action set A is given by the following grammar,
where a ∈A.

ω :: > | a | ω1 t ω2 | ω1 u ω2

> is the propositional constant, which represents no action is needed to be invoked.
Action a represents a single action is needed to be invoked. The expression ω1 t ω2

represents that each conversation represented by ω1 or ω2 can be invoked. The expres-
sion ω1 u ω2 represents that one conversation must contain each conversation from ω1

and ω2. The set of all conversation expressions on the action set A is denoted by ω(A).
A conversation interface I = (A, E , EC , EF), where A ⊆M × O is a set of actions

that can appear in I, E , EC and EF are partial functions, whose definitions are same
as A→ω(A). The meanings of functions are similar to those of signature interface, ex-
cept that each function assigns to an action a conversation expression to describe the
interface behaviour.

A conversation is a set of actions, which do not have any sequence information.
[4] presented protocol interface to depict the sequences of actions. In this paper, the
protocol interface is extended to enable transaction description. In Web service, the
modes of action invocations include thread creation, choice, parallel executions, join
after parallel execution, and sequence etc. We use terms to represent these different
modes. The set of terms over an action set A is given by the following grammar, where
a, b ∈ A.

term :: τ | a | a t b | a u b | a ¢ b | a ; b | [term]

The set of all terms over A is denoted by Term(A), and [[term]] = [term]. The
term τ is an Empty term, which represents that no action is invoked. The term a=〈m, o〉
is a Call term, which represents a call to Web method m with expected outcome o. The
term atb is a Choice term, which represents a nondeterministic choice between actions
a and b. The term a u b is a Fork term, which represents parallel invocations of actions
a and b, and the parent waits for both actions to return. If any action is an exception
action, the parent fails. The term a ¢ b is a Fork-Choice term, which represents parallel
invocations of actions a and b, while the return of any action will return the parent. a¢b
fails only when both actions are exception actions. The term a ; b is a Sequence term,
which represents two sequential calls. The term [term] is a Transaction term, which
represents that any exception action invoked from the term in the brackets will cause
the compensation or fault handling to the actions which are invoked before from the the
term in the brackets. For the sake of simplicity, it is assumed that the term of transaction
term must result in exceptions.

The sequences of invocations between Web services can be specified in automata.
To indicate the place where exceptions occur, we propose extended protocol automata
as follows.

Definition 2 (Extended Protocol Automata, EPA). An extended protocol automaton
G is a triple (A,L, δ), where A is a set of actions, L is a set of locations, there are two
special locations ⊥,£ in L, ⊥ ∈ L is the return location, and £ ∈ L is the exception
location, δ ⊆ (L \ {⊥,£})× Terms(A)× L is the transition relation set.

A location is terminating in EPA if there exists a trace starting from the location and
ending with ⊥ or £. Based on EPA, we define protocol interface as follows.

Definition 3 (Protocol Interface, PI). A protocol interface T is 4-tuple (G,R,RC ,RF),
where G is an extended protocol automaton to specify interface behaviour,R : A → L is
a partial function that assigns to an action the start location in G, RC : A → L is a par-
tial function that assigns to an action a the start location in G of the compensation for
a, RF : A → L is a partial function that assigns to an action a the start location in G of
the fault handling for a, and dom(RC)∩dom(RF) = ∅, dom(RC)∪dom(RF) = dom(R).

A location is terminating in PI if it is terminating in EPA and the start location of
each action in the terminating trace is also terminating in PI. Given a protocol interface
T = (G,R,RC ,RF), the underlying signature interface of T (denoted by psi(T)) is
(As,S,SC ,SF), where As = A; S(a) = sigl(R(a)) if R(a) is defined, otherwise S(a)

is undefined; SC(a) = sigl(RC(a)) if RC(a) is defined, otherwise SC(a) is undefined;
SF (a) = sigl(RF (a)) if RF (a) is defined, otherwise SF (a) is undefined. The function
sigl : L → 2A is defined as follows:

sigl(⊥) = ∅, sigl(£) = ∅, sigl(q) =
S
∃(q,term,q′)∈δ ϕ(term) ∪ sigl(q′),

ϕ(τ) = ∅, ϕ(a) = {a}, ϕ([term]) = ϕ(term), ϕ(a¤b) = {a, b}, ¤ ∈ {t,u, ¢, ; }.
A protocol interface T is well-formed if the following conditions hold: psi(T) is

well-formed; if a ∈ dom(R), then R(a) is terminating; if a ∈ dom(RC), then RC(a)

is terminating; if a ∈ dom(RF), then RF (a) is terminating. For the sake of simplicity,
it is assumed that: no transaction term can be invoked by exception action, nor can
it be invoked by compensation or fault handling; transaction term cannot be invoked
recursively or parallelly. The types of an action a in a protocol interface T are same as
those of a in psi(T).

Given two protocol interfaces T1 = (G1,R1,RC1,RF 1) and T2 = (G2,R2,RC2,RF 2),
they are compatible if the following conditions are satisfied: psi(T1) and psi(T2) are
compatible, and L1∩L2 = {⊥, £}; Tc = T1∪T2 = (G1∪G2,R1∪R2,RC1∪RC2,RF 1∪
RF 2) is well-formed, where G1 ∪ G2 = (A1 ∪ A2,L1 ∪ L2, δ1 ∪ δ2). If T1 and T2 are
compatible (denoted by comp(T1, T2)), their composition (denoted by T1 ‖ T2) is Tc.
The composition operator is commutative and associative. The substitutivity relation
between protocol interfaces should be defined based on the semantics to ensure the
temporal correctness.

Signature interface and conversation interface describe the static invocation rela-
tions of Web service interfaces, and their semantics are simple and show the static as-
pects of the Web service interface. Protocol interface describes dynamic invocations in
Web service interfaces. The interface behaviour of protocol interface should ensure not
only the invocation process should been recorded for compensation or fault handing, but
also the sequence of compensation and fault handling should agree to the long-running
transaction model.

3 The Semantics of Protocol Interface

The action invocation process is a pushdown system which can continue only after the
completion of every invoked action. The sequence of compensation and fault handling
should be reverse of the sequence of the previous invocations, and the recorded actions
should be first in last out. Therefore, we use a binary tree nested by a stack to interpret
the protocol interface behaviour.

A binary tree over a finite set of labels L is a partial function t : B∗ → L, where
B∗ denotes the set of finite words over B = {0, 1}, and ρ denotes the empty word.
T(L) denotes the set of all trees over a finite label set L. A stack over a finite set of
labels L is a partial function s(m) : N → L, where N is the natural number set, and
dom(s(m)) = {n | n < m ∧ n ∈ N}. s(0) is the empty stack. s(m)(m − 1) is the top
element of the stack s(m). S(L) denotes the set of all stacks over a finite label set L.

Given a protocol interface (G,R,RC ,RF), its semantics is defined by a labeled
transition system (LTS). The set of states is T(Qt) × B∗ × S(Term(A)), that is, the
Cartesian products of trees over Qt = L×A∗×℘, the set of tree nodes B∗, and stacks over
Term(A), where L is the location set of EPA G, A∗ is the set of words over the action
set A in G, ℘ = {◦,�,�c,�d, ¢, ¢c, ¢d,4,∇,¯,�} is the node type set, and the tree
node in B∗ is the corresponding node of the stack. The underlying transition relation of
T is a transition relation →T⊆ (T(Qt)×B∗ × S(Term(A)))× 2A∪{ret,exp,cfstart,end} ×
(T(Qt) × B∗ × S(Term(A))). The label of state transition is the set of elements from
A∪{ret, exp, cfstart, end}. We write ν →B ν′ for (ν,B, ν′) ∈→T , where ν = (t, Ψ, s(n))

and B ⊆ A ∪ {ret, exp, cfstart, end}. The transition rules have two parts, the first part
consists of the rules for normal behaviour transitions, and the second part consists of the
rules for transitions made by compensation or fault handling. The second part weaves
the transaction behaviour into the normal behaviour.

The beginning of normal behaviour is the invocation of a supported action. The ini-
tial state is a tree that has only one node and a stack whose content is decided by the type
of the supported action. Supposing we start from invoking a supported action a, if a is
a success action, the initial state is νinital = (tinital, Ψ, s(0)) = ({(ρ, (R(a), ρ, ◦))}, ρ, ∅),
else if a is an exception action, the initial state is νinital = (tinital, Ψ, s(1)) = ({(ρ, (R(a),

ρ, ◦))}, ρ, {(0, a)}). The operations in normal transaction rules can be divided into two
parts: tree operations and stack operations. The tree operations depict a pushdown sys-
tem. Only leaf nodes of the tree can be operated. Call, Choice and Sequence terms lead
to pushing down the leaf node. Fork and Fork-Choice terms lead to branching the leaf
node. Transaction term leads to pushing down the leaf node with a transaction node.
For pushdown operations, if current node location is reached from a success supported
action, or the leaf node is not pushed from a transaction term node, no stack opera-
tions is needed. If current node location is reached from a supported exception action,
or the node is branched from a transaction term node and the transaction node is not
under compensation or fault handling, stack operations is needed. Main operations in
the normal rules are illustrated in Figure 1.

There are five normal transition rules. As a shorthand, the rules (Pushdown) and
(Exception) are listed in Appendix. The rule (Pushdown) describes the operations
of different invoked terms. The rule (Exception) describes that when an exception
location is reached, some coordination should be taken. There are two complicated

No Branching

qa

 a

qa

a⊓b

qa qb

a⊞b

qa qb

 a;b

qa

 q(a)

qa

 [term] ⊥⊙

Child Trees

 a ⊥

 a⊓b

Child Trees

⊥ qa

 a⊞b

Child Trees

⊥

 a ⊠
qa

 a⊓b

Child Trees

qb ⊠

No Branching

qa

 a⊞b

Child Trees

qb ⊠

Changed to ⊠

No Branching

⊠

 a⊞b

qb ⊠

Push term
 into Stack

N
o stack operation

N
o stack operation

Pushdow
n

R
eturn

E
xception

a⊔b

qc

Fig. 1. Illustrations of operations in normal transition rules.

cases. The first case is that the exception location is reached from a Fork term, and
it will cause the global exception and the other branch should be terminated. Another
case is that the exception location is reached from a Fork-Choice term, and whether it
can cause the global exception is determined by the other branch. If the other branch
returns successfully, the parent is successful. If the other branch does not return, this
branch should wait until the return of the other branch. If exception also occurs in the
other branch, the global exception occurs. The invocation of the unsupported action is
supposed to return immediately.

The compensation and fault handling occur in the condition that some exception ac-
tions have been invoked. After normal transitions, actions in the execution must return,
and the state of the execution must reach ({(ρ, (⊥, ρ, ◦))}, ρ, s(0)) or ({(ρ, (£, ρ, ◦))}, ρ,

s(n)) with n > 0. If it is ({(ρ, (⊥, ρ, ◦))}, ρ, s(0)), the invocation is successful, and
no compensation or fault handling is needed. If the state is ({(ρ, (£, ρ, ◦))}, ρ, s(n)),
some exceptions occur in the invocation process, and compensation or fault handling
should be taken. After compensation or fault handling, the state must finally reach
({(ρ, (⊥, ρ, ◦))}, ρ, s(0)), which represents that the whole invocation process completes.
If the invocation returns on a node whose corresponding label is (£, ρ,¯), Φ 6= ρ, and
the stack is not empty, it represents that a transaction term invocation has returned, and
compensation or fault handling should be taken.

It is assumed that no exception will appear in compensation or fault handling. The
compensation and fault handling do not need stack operation. The operations in com-
pensation and fault handling transition rules are simpler than those in normal transition
rules. The transition rules specify that the recorded term in the stack should be popped
out in sequence, and whether compensation or fault handling will be taken is deter-
mined by the action type. After completing compensation and fault handling, whether
the invocation process terminates is determined by the exception reason. If the begin-
ning action is a supported exception action, the invocation process terminates. If the
exception is resulted from a Transaction term, the invocation process will continue.

Based on the transition rules, we can use the LTS simulation relation to define the
substitutivity relation of protocol interfaces. A labeled transition system is a 4-tuple
(S, I, L, ∆), where S is the set of states, I ⊆ S is the set of initial states, L is the set

of labels, and ∆ ⊆ S × L × S is the transition relation set. Given a protocol interface
T = (G,R,RC ,RF), and a supported action a, the underlying labeled transition system
of invoking a (denoted by LTS(T , a)) is (Sa, Ia, La, ∆a), which can be given as follows:
Sa = T(Qt)×B∗×S(Term(A)); if a is a success action, Ia = {({(ρ, (R(a), ρ, ◦))}, ρ, ∅)};
if a is an exception action, Ia = {({(ρ, (R(a), ρ, ◦))}, ρ, {(0, a)})}; La = 2A∪{ret,exp,cfstart,end};
∆a is the underlying transition relation set of T using the transition rules.

Because ret, exp, cfstart, and end are not external Web service actions, the tran-
sitions labeled by them do not assume to the environment. The simulation relation of the
underlying labeled transition systems can be extended to relax the conditions that substi-
tutivity should satisfy. We denote (s1, a, s′1) ∈ ∆ as s1 →a s′1. If t = a1a2...an ∈ L∗,
s1 →a1→a2 ... →an

s′1 is denoted as s1 →t s′1.
Given two LTSs M1 = (S1, I1, L1, ∆1) and M2 = (S2, I2, L2, ∆2) and a label set W ,

M2 is weakly simulated by M1 over the label set W if there exists a relation 4W⊆ S1×S2

such that: for every s1 ∈ M1, s2 ∈ M2, if s2 4W s1, then for every (s2, a, s′2) ∈ ∆2, there
exists s1 Ãa s′1 in ∆1, such that s′2 4W s′1, where s1 Ãa s′1 represents s1 →t s′1, in
which t = a1a2...an, and there exists only one ai that ai = a, and all the other labels are
all in W ; for every s2 ∈ M2, there exists s1 ∈ M1 such that s2 4W s1.

Given two protocol interfaces T1 = (G1,R1,RC1,RF 1) and T2 = (G2,R2,RC2,RF 2),
we say T2 refines T1 (T2 4 T1) if the following conditions are satisfied: psi(T2) 4
psi(T1), and for every a ∈ dom(R1), LTS(T2, a) is weakly simulated by LTS(T1, a)

over 2{ret,exp,cfstart,end}. Given three protocol interfaces T1, T2, and T3, if comp(T1, T3),
comp(T2, T3), and T2 4 T1, then T2 ‖ T3 4 T1 ‖ T3.

4 Case Study

Figure 2 shows a classical Web service-based system, supply chain management sys-
tem. The system is composed of six Web services. Each labeled arrow from one service
to another indicates the Web method call from the caller to the callee. Shop supports the
Web method SellItem that can be called by the Client to start the selling process. When
the selling process starts, the Shop will first check the availability of items to be sold by
calling the method ChkAvail, which requires the Web method ChkStore implemented
by Store to check whether the desirable items are in stock and deduct the number of
items if the stock checking is successful. If the stock is inadequate, the selling process
fails. If the stock is inadequate or the stock after deducting is below a certain amount,
the Store department will make an order from the Supplier and get some new items. If
the availability checking is successful, the Shop will parallelly process the payment by
calling the method ProcPay and the delivery by calling the method ShipItem. ProcPay
is implemented by the Bank and its success can be compensated by calling the method
Compensate. ProcPay is implemented by Transport and its success can be compensated
by calling the method Withdraw. If all the above steps are successful, the selling process
is successful, otherwise the successful steps before failure should be compensated and
the failed steps should be handled. For instance, the Shop will call the method Apologize
implemented by itself to send an apologetic letter to the Client because of the failure
of the selling process. After composition, the supply chain management system con-
tains six Web services. The protocol interface for the system and a trace of the action

Shop

Bank Transport

Store

Supplier

Post office

Client
SellItem

Recede

Compensate

ProcPay ShipItem WithDraw

Apologize ChkAvail

ChkStore

RStore

GetOffer

Order

SendLetter

Fig. 2. Supply chain management system.

〈SellItem, FAIL〉 invocation is shown in Figure 3, and the reason of purchasing failure
is the invocation of action 〈ProcPay, FAIL〉.

As a shorthand, we use the set whose elements are

formed in (l, term, l') to represent the transition

relation set in EPA, where l and l' are the locations

of EPA. The partial functions are indicated by

adding an action before a transition and the

corresponding location of the action is simply the

source location of the transition at the head

position.

{… 〈SellItem, OK〉 R→ (q0, 〈ChkAvail, OK〉, q1),

(q1, 〈ProcPay, OK〉�〈ShipItem, OK〉, ⊥), 〈SellItem, FAIL〉 R→ (q3, 〈ChkAvail, FAIL〉, �),

(q3, 〈ChkAvail, OK〉, q4)
(q4, 〈ProcPay, FAIL〉�〈ShipItem, FAIL〉, �),

 (q4, 〈ProcPay, OK〉�〈ShipItem, FAIL〉, �),

 (q4, 〈ProcPay, FAIL〉�〈ShipItem, OK〉, �), 〈ChkAvail, OK〉 R→ (q6, 〈ChkStore, OK〉, ⊥), 〈Apologize, OK〉 R→ (q8, 〈SendLetter, OK〉, ⊥), 〈ProcPay, FAIL〉 R→ (q22, τ , �), 〈Compensate, OK〉 R→ ⊥, 〈RStore, OK〉 R→ ⊥, 〈ChkStore, OK〉 R→ ⊥,〈WithDraw, OK〉 R→ ⊥, 〈ShipItem, OK〉 R→ (q21, 〈Package, OK〉, ⊥),… 〈ChkAvail, OK〉
CR→ ⊥, 〈ChkStore, OK〉
CR→ (q17, 〈RStore, OK〉, ⊥) 〈ShipItem, OK〉
CR→ (q20, 〈WithDraw, OK〉,⊥),… 〈ChkAvail, FAIL〉

FR→ ⊥, 〈SellItem, FAIL〉
FR→ (q13, 〈Apologize, OK〉,⊥),

…}.

{<ProcPay, OK>,<ShipItem,OK>}

 q4

q6

 q3

 q4 ⊥ ⊥

{<ChkAvail, OK>}

 q4 ⊥

{<ChkStore, OK>} {ret}

 q4
{ret}

 ⊠

q22 q21

 ⊠

q22 q21

 ⊥

 ⊠ ⊠
q21

 ⊥

{<Package, OK>} No action
 ⊠

{exp}

 ⊠ ⊥

{cfstart}

 ⊠

{ret}

 ⊠ ⊥ q20

{cfstart}

 ⊠ ⊥ ⊥

 ⊥

{<WithDraw, OK>}

 ⊠

{ret},{ret},{ret}

 ⊠

q17

 ⊠ ⊥ ⊥

{cfstart}

{<RStore, OK>}

 ⊠

q13

{ret},{ret},{cfstart},{ret},{cfstart}

 ⊠ ⊥

{<Apologize, OK>}

 q8

 ⊠ ⊥ ⊥

 ⊥

{<SendLetter, OK>}

 ⊠
⊥

{ret},{ret},{ret} {end}

Fig. 3. The protocol interface for the supply chain management system and a trace of the action
〈SellItem,FAIL〉 invocation.

5 Related Work

There are many researches on formalization and verification of Web service interface
behaviour, which can be divided by the underlying semantic theory as follows:

Petri net. [8] used Petri net to formalize the Web service compositions. [9] used
WF-nets (workflow nets) to formalize the BPEL description, and a mapping from BPEL
process model to WF-net was proposed.

Process algebra. Foster [10] used finite state process (FSP) to formalize BPEL
and WS-CDL [11], and the specifications are verified on LTSA WS-Engineer, which
can perform safety and liveness analysis, and interface compatibility checking. In [12],
BPEL-Calculus was proposed to formalize BPEL, and the description can be verified
on Concurrency WorkBench (CWB) by a syntax compiler plug-in for BPEL-Calculus.

Automata. In [13], guarded finite state automata (GFSA) was used to describe ser-
vice composition, and the description can be translated to Promela which can be verified
on SPIN. In [14], hierarchical state machine (HSM) was used to specify Web service
interfaces, and Java PathFinder (JPF) was used to verify that the implementation of
each peer of Web service system conforms to its interface, and the interface behaviour
models can be verified on SPIN.

The above approaches are deficient in modeling transaction behaviour of Web ser-
vice interfaces, especially in compensation and fault handling. Because of the defi-
ciency in formalism, the above verification methods cannot verify the properties which
specify transaction behaviour part in Web service interfaces. By extending [4], the for-
malism presented in this paper can rigorously describe the transaction behaviour of
Web service interfaces. The above verification methods mainly take into account the
temporal interface behaviour and properties of Web services. In practice, some Web
service providers cannot publish interfaces with temporal information. The approaches
in [8–10, 12–14] cannot handle this situation. Additionally, there are some researches on
formalization of long-running transactions. Butler et al. [16] extended communicating
sequential process (CSP) to enable the description of long-running transactions. In [17],
an enhanced Sagas language is proposed for specifying compensation in flow compo-
sition languages. Their approaches mainly aim at description of dynamic transactional
behaviour. Our approach takes into account different abstract levels and separates the
transaction description from the normal behaviour description.

6 Conclusions

Web service is the most popular implementing framework for service-oriented comput-
ing. In this paper, we aim at formalization of Web service interfaces with transactions.
The final goal is to ensure the correctness of Web service interfaces. This paper presents
an interface theory for specifying interface behaviour with transactions in Web services.
The signature interface specifies the direct invocation relations and the conversation in-
terface specifies different invocations for the same call. With protocol interface, tem-
poral invocations can be specified. To serve as a dynamic semantics of interfaces, a
set of operational rules are presented to transform the protocol interface behaviour into
labeled transition systems. The relation conditions of compatibility and substitutivity
between Web services are also presented in this paper. The separate description method
used in this paper reflects some ideas of AOP, and different parts of behaviour can be
weaved together in the semantics.

Through our approach, one can precisely describe Web service interface transaction
information. The interface theory for Web services will form as a formal foundation of
service-oriented software engineering, especially in the specification and verification of
service-oriented systems.

Currently, a model checking based verification method has been proposed [7] and
our interface theory has been be applied to BPEL [18], and the application raises some
issues which need improvements of the interface theory, such as data handling descrip-
tion. Other ongoing and future works are to investigate an integrated formalism for both
service orchestration and choreography by Web service interface theory, and to build the
corresponding tools for specification and verification.

References
1. Humberto, C., Richard, S.H.: Technical Concepts of Service Orientation. Service-Oriented

Software System Engineering: Challenges and Practices, pp. 1-47, 2005.
2. Curbera, F., et al.: Business Process Execution Language For Web Services Version 1.1.

ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf.
3. de Alfaro, L., Henzinger, T.A.: Interface automata. In Proc. of ESEC/FSE’01, pp. 109-120,

2001.
4. Beyer, D., Chakrabarti, A., Henzinger, T.A.: Web Service Interfaces. In Proc. of WWW’05,

pp. 148-159, ACM Press, 2005.
5. Little, M.: Transactions and Web Services. Communication of the ACM, 46(10):49-54, 2003.
6. Kiczales, G., et al.: Aspect-Oriented Programming. In Proc. of ECOOP’97, LNCS 1241,

pp. 220-242, Springer, 1997.
7. Chen, Z.B., Wang, J., Dong, W., Qi, Z.C., Yeung, W.L.: An Interface Theory Based Approach

to Verification of Web Services. In Proc. of COMPSAC’06, pp. 139-144, IEEE Press, 2006.
8. Hamadi, R., Benatallah, B.: A Petri Net-based Model for Web Service Composition. In

Proc. of ADC’03, pp. 191-200, IEEE Press, 2003.
9. Verbeek, H.M.W., van der Aalst, W.M.P.: Analyzing BPEL Processes using Petri Nets. In

Proc. of the 2th International Workshop on Applications of Petri Nets to Coordination, Work-
flow and Business Process Management at the Petri Nets’05, pp. 59-78, 2005.

10. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Compatibility for Web Service Choreography.
In Proc. of ICWS’04, pp. 738-741, IEEE Press, 2004.

11. Kavantzas, N., et al.: Web Services Choreography Description Language Version 1.0.
http://www.w3.org/TR/ws-cdl-10/.

12. Koshkina, M.: Verification of Business Processes for Web Services. [MS. Thesis]. York
University, 2003.

13. Fu, X., Bultan, T., Su, J.W.: Analysis of Interacting BPEL Web Services. In Proc. of
WWW’04, pp. 621-630, ACM Press, 2004.

14. Betin-Can, A., Bultan, T.: Verifiable Web Services with Hierarchical Interfaces. In Proc. of
ICWS’05, pp. 85-94, IEEE Press, 2005.

15. Beyer, D., Chakrabarti, A., Henzinger, T.A.: An Interface Formalism for Web Services. In
Proc. of the WorkShop FIT at CONCUR’05, San Francisco, CA, 2005.

16. Butler, M., Ripon, S.: Executable Semantics for Compensating CSP. In Proc. of WS-FM’05,
LNCS 3670, pp. 243-256, Springer, 2005.

17. Bruni, R., Melgratti, H., Montanari, U.: Theoretical Foundations for Compensations in Flow
Composition Languages. In Proc. of POPL’05, pp.209-220, ACM Press, 2005.

18. Chen, Z.B., Wang, J., Dong, W., Qi, Z.C.: Interface Theory based Formalization and Verifica-
tion of Orchestration in BPEL4WS. In Proc. of the Workshop SOT at ICEC’06, Fredericton,
New Brunswick, Canada, 2006.

Appendix. Some Important Normal Transition Rules
Due to the space limitations, we only give two normal transition rule definitions, where

– Let pj denote the concatenation of the word p with j ∈ B, and pp′ denote the concate-
nation of the words p and p′. For a tree t and a node p ∈dom(t), leaf(t) = {p ∈
dom(t) | ∀j ∈ B, pj /∈ dom(t)}, child(p)={q | ∃j ∈ B, q=pj ∧ q∈dom(t)}, and
parent(p) = {q | ∃j ∈ B, p = qj ∧ q ∈ dom(t)}. ancestor(p1, p2) = (p1 ∈
parent(p2))∨(∃q ∈ parent(p2). ancestor(p1, q)) denotes whether a node p1 is the an-
cestor of another node p2. ancestor-y(p, β) denotes the node p’s youngest ancestor whose
node type is β;

– in a transition, the source state is defined as ν = (t, Ψ, s(n)), and the target state as ν′ =
(t′, Ψ ′, s′(m)). q(w)β represents (q, w, β) in Qt, and if w = ρ, qβ is used to represent it.
For example, q¢ represents (q, ρ, ¢);

– δ(q) = (a, q′) denotes that there exists a transition relation (q, a, q′) in the extended protocol
automaton. ξ(p) = ¤ if the type of the tree node p is ¤ ∈ ℘. If action c is supported by R,
qc = R(c), otherwise qc = ⊥.

(Pushdown) ν →M ν′

If there exists a node p such that p ∈ leaf(t), t(p) = qβ, where β ∈ ℘, δ(q) = (r, q′), and
Ψ = ρ ∨ (Ψ 6= ρ ∧ ξ(Ψ) = ¯):

– r = a: t′ = (t \ {(p, qβ)}) ∪ {(p, q′β), (p0, qaβ)}, term1 = a, and M = {a};
– r = a t b: t′ = (t \ {(p, qβ)}) ∪ {(p, q′β), (p0, qcβ)}, where c ∈ {a, b}, term1 = c, and
M = {c};

– r = a u b: t′ = (t \ {(p, qβ)}) ∪ {(p, q′α), (p0, qa�c), (p1, qb�c)}, where (β = ◦ ∧ α =
�) ∨ (β = �c ∧ α = �d) ∨ (β = ¢c ∧ α = ∇), term1 = a u b, and M = {a, b};

– r = a ¢ b: t′ = (t \ {(p, qβ)})∪ {(p, q′α), (p0, qa¢c), (p1, qb¢c)}, where (β = ◦ ∧ α =
¢) ∨ (β = ¢c ∧ α = ¢d) ∨ (β = �c ∧ α = 4), term1 = a ¢ b, and M = {a, b};

– r = a; b: t′ = (t \ {(p, qβ)}) ∪ {(p, q′(b)β), (p0, qaβ)}, term1 = a, and M = {a};
– if t(p) = q(a)β, where β ∈ ℘, then t′ = (t \ {(p, q(a)β)}) ∪ {(p, qβ), (p0, qaβ)}, and

term1 = a,M = {a}.

If n = 0 ∨ (Ψ 6= ρ ∧ p 6= Ψp′), then s′(m) = s(n), m = n. If (n > 0) ∧ ((Ψ = ρ) ∨ (Ψ 6=
ρ ∧ p = Ψp′ ∧ ξ(Ψ) = ¯)), then m = n + 1, and s′(m) = s(n) ∪ {(n, term1)}.

(Exception) ν →{exp} ν′

If there exists a node pθ such that pθ ∈ leaf(t), where θ ∈ B, t(pθ) = £β, where β ∈ ℘,
and Ψ = ρ ∨ (Ψ 6= ρ ∧ ξ(Ψ) = ¯):

– β = ◦ and t(p) = qβ: t′ = (t \ {(pθ, £◦), (p, qβ)}) ∪ {(p, £β)};
– β = �c, t(pa) = qα, where α ∈ {�,�d,∇,¯}, and ancestor-y(pθ, α) = pa: t′ =

(t \ {(pap′, q′) | p′ ∈ B∗ ∧ q′ = t(pap′)})∪ {(pa, £β)}, where (α = �∧ β = ◦)∨ (α =
�d ∧ β = �c) ∨ (α = ∇∧ β = ¢c) ∨ (α = ¯ ∧ β = ¯);

– β = ¢c, and t(pa) = qα, where α ∈ {¢, ¢d,4,¯} and ancestor-y(pθ, α) = pa: if there
exists pb ∈ {p′ | child(pa) ∧ ¬ancestor(p′, p)}, and #child(pb) > 0 ∨ ξ(pb) = ⊥, then
t′ = (t \ {(pcp

′, q′) | p′ ∈ B∗ ∧ q′ = t(pcp
′)}) ∪ {(pc, £β)}, where pc ∈ child(pa) ∧

ancestor(pc, p), and t(pc) = qcβ; if all nodes in {p′ | child(pa) ∧ ¬ancestor(p′, p)}
have no child, and the types of all nodes are same as £, then t′ = (t \ {(pap′, q′) | p′ ∈
B∗ ∧ q′ = t(pap′)})∪{(pa, £β)}, where (α = ¢∧β = ◦)∨ (α = ¢d ∧β = ¢c)∨ (α =
4∧ β = �c) ∨ (α = ¯ ∧ β = ¯);

– t(p) = q(a)β, where a ∈ A: t′ = (t \ {(pθ, £β), (p, q(a)β)}) ∪ {(p, £β)}.

In all conditions, s′(m) = s(n), and m = n.

