
MTracer: A Trace-oriented Monitoring Framework
for Medium-scale Distributed Systems

Jingwen Zhou∗†, Zhenbang Chen∗†, Haibo Mi∗, and Ji Wang∗†
∗Science & Technology on Parallel & Distributed Processing Lab, National Univ. of Defense Technology, Changsha, China

†College of Computer, National Univ. of Defense Technology, Changsha, China
Email: zjw8612@gmail.com, zbchen@nudt.edu.cn

Abstract—Trace-oriented runtime monitoring is a very ef-
fective method to improve the reliability of distributed sys-
tems. However, for medium-scale distributed systems, existing
trace-oriented monitoring frameworks are either not powerful
or efficient enough, or too complex and expensive to deploy
and maintain. In this paper, we present MTracer, which is a
lightweight trace-oriented monitoring system for medium-scale
distributed systems. We have proposed and implemented several
optimizations to improve the efficiency of the monitoring server
in MTracer. A web-based visualization is also provided in MTrace
to visualize a monitored system from different perspectives. We
have validated MTrace in a real medium-scale environment.
The experimental results indicate that MTrace has a very lower
overhead, and can handle more than 4000 events per second.

Keywords—monitoring; trace-oriented; visualization; paral-
lelization; distributed system

I. INTRODUCTION

With the improvement of computing power and the re-
duction of price, many corporations and institutions build
their own clusters that are medium-scale and contain tens to
hundreds nodes. Various distributed systems are deployed on
these clusters, bringing enormous convenience and benefits.

However, due to the problems resulted from software and
hardware, such as hardware errors, software bugs and network
issues, failures often happen in distributed systems, and cause
functional or performance problems. What is even worse is
that some of these failures are very hard to locate and replay.
For example, on July 29, 2012, Amazon suffered a service
disruption in one of its Availability Zones in the US East
Region, which lasted about 20 hours and affected lots of
companies and websites [1]. Therefore, how to ensure the
reliability of these distributed systems is a really important
problem. Because real world distributed systems are usually
very complex, traditional methods, such as testing, verification
and validation, cannot solve the reliability problem at the
design stage. Some failures of a distributed system appear
after deployment. Hence, runtime monitoring complements the
methods used at design stage as a method for improving the
reliability of distributed systems at runtime. By using runtime
monitoring, we can monitor a distributed system to record the
runtime information of the system, which can be used for many
activities, including online bug detection, failure localization,
runtime enforcement, etc.

Currently, there are two kinds of monitoring for distributed
systems: resource-oriented and trace-oriented. Resource-
oriented monitoring [2], [3] usually tracks the hardware re-
source consumption of a distributed system, such as the

memory and CPU. In contrast, trace-oriented monitoring [4]–
[11] tracks the execution paths, or called traces, of the requests
in a distributed system. Trace records the context of each step
in a request, like latency, and relationships between steps, such
as function calls and process communications. Generally, we
consider that trace-oriented monitoring collects more valuable
information than resource-oriented monitoring if we want to
understand a system in more detail. In addition, traces can also
reflect resource consumptions to some extent.

Today, there already exist some available platforms for
trace-oriented monitoring, such as X-Trace [4] and P-Tracer
[5]. However, some platforms, such as X-Trace, are still in
prototype, which are not efficient and powerful enough for
medium-scale systems. On the other hand, some platforms
are very complicated to deploy and maintain, especially when
we only want to monitor a medium-scale distributed system.
Sometimes it is even more complex than the monitored sys-
tems, e.g., P-Tracer uses a map-reduce process to construct
call trees [5]. Actually, in these monitoring platforms, failures
would also easily occur and are also difficult to recover.
Therefore, we believe what many medium-scale distributed
systems need is a trace-oriented monitoring system that is
effective and efficient for using, and lightweight for deployment
and maintenance.

In this paper, we propose a monitoring framework, called
MTracer, to help understanding the behaviors of medium-
scale distributed systems and also the detection, locating and
recovery of failures. MTracer has the following features. (1)
Lightweight. MTracer adopts the server-client framework. The
resource needed by running the monitoring server is little,
and the overhead of a client is negligible. Thanks to the
simple framework, exceptions seldom happen in MTracer,
and it is easy to recover in case of failures. (2) Efficient.
When receiving the events from clients, the server stores
them in parallel. Optimizations are also introduced to improve
the efficiency. Our experimental results show that MTracer
can process 4000+ events per second, which is 7+ times
than the original version. (3) Real-time. Clients send events
asynchronously, and the server can generate trace trees quickly.
Hence, users can inspect the behaviors of the system under
monitoring in time. (4) Visualized. We also provide a friendly
web-based interface for visualization. Users can do queries
from different aspects, such as trace, operation and node. Other
functions, such as trace classification and outlier highlighting,
are also integrated.

To summarize, this paper makes two main contributions.
First, we have built a trace-oriented monitoring framework

Network

Node1

Node2 Noden

Reporter

DS ...

Monitor Server

M
onitor S

erver

...

Cluster

System
Manager

Receiver

Extractor

Writer Writer...

UI

R
ecovering

information

Event

Instrumented part

Database

Fig. 1. The architecture of MTracer. The blue boxes represent the components
belonging to MTracer, while the orange directed dashed lines represent
information flows.

that is efficient, lightweight and real-time, to collect the trace
information of medium-scale distributed systems. Second, a
corresponding interface for visualization is implemented to
help users inspect the behavior of their systems and do failure
locating and recovering.

The rest of this paper is structured as follows. In Section II,
we give the architecture of our approach. Section III describes
the trace recording and reconstruction. In Section IV, we
discuss the process of data storing, focusing on the optimiza-
tions. Section V discusses some aspects of the visualization. In
Section VI, we present our experimental results. Section VII
reviews the related work and Section VIII concludes.

II. SYSTEM ARCHITECTURE

Usually, the main task of a distributed system is to handle
user requests, and a trace is the internal execution path of
handling a request. Hence, traces record the behaviors of a
distributed system. Basically, a trace is composed by events,
which record the context of each step in handling a request,
such as function name and latency, and the relationships
between events, like function calls. Thus, we take events and
their relationships as the minimal units for data collecting and
storing. Fig. 1 shows the architecture of MTracer, which is
in the typical client-server style, and contains a monitoring
server and many clients inside. DS is a distributed system
being monitored, and deployed on n nodes. Each node acts
as a MTracer client, collecting information and sending them
to the monitoring server.

In more detail, we need first instrument the distributed
system, using the interfaces provided by MTracer at the places
where we are interested in to collect the information we want.
When a request passes these places, the related information
is gathered and packed into an event. The reporter sends
the event to the server through network in terms of UDP
or TCP protocol, decided by user. Once receiving an event,
the monitor server extracts the useful information and delivers
them to different writers. The writers then store the information
concurrently. To speed up the process of data storing, we also
introduce two optimizations. The web-based UI can construct

F1

F2

F3 F4

F5

TID1

TID1TID1

TID2 TID3

Node1

Node2

ET1

ST2

ST3 ET3 ST4 ET4

ST5 ET5

Request start Request end

ET2

ST1

(a) Process of execution.

TraceID FatherTID FatherST ChildTID Location

E1 Trace1 0 0 TID1

E2 Trace1 TID1 ST2 TID2

E3 Trace1 TID1 ST2 TID3

Edges

Node TraceID TID Timestamp Name Location

R1 Node1 Trace1 TID1 ST1 ET1 F1

R2 Node1 Trace1 TID1 ST2 ET2 F2

R3 Node2 Trace1 TID2 ST3 ET3 F3

R4 Node2 Trace1 TID3 ST4 ET4 F4

R5 Node1 Trace1 TID1 ST5 ET5 F5

Events

(b) Corresponding events and edges.

F1

F2

F3 F4

F5

F1

F2

F3 F4

F5

TID1

TID2 TID3

F1

F2

F3 F4

F5

TID2 TID3

F1

F2

F3 F4

F5

TID2 TID3

TID1 TID1

(c) Process of trace reconstruction.

Fig. 2. An sample of trace recording and reconstruction.

the causal relationships between the events in a same request
to form a trace that records the internal execution path of the
request. With request traces, users, such as system managers,
can inspect how each request proceeds. In addition, we can
also use trace information to support online fault detection,
localization and fixing.

In summary, MTracer contains three parts: data collecting,
storing and visualizing, which will be explained in detail in
Section III, Section IV and Section V, respectively.

III. TRACE RECORDING AND RECONSTRUCTION

As mentioned earlier, a trace consists of events and the
relationships between the events. An event contains some
information collected automatically, such as start/end time
stamp and host address, at an instrumentation point. In this
section, we focus on how to record the relationships, which
are the most important for trace reconstruction. A procedure
for reconstructing a trace is also introduced.

A. Trace Recording

To distinguish different traces, we assign a unique TraceID
to each request. We also introduce TID for events. For over-
head consideration, inspired by the idea of P-Tracer [5], we do
not assign a new TID for each event. A TID can be understood
as a temporary thread ID, and we can identify the events with
a same TID with respect to the start time stamps. The rules of
recording trace, especially event relationships, are as follows.

• Assigning a new TID when a trace starts.

• Each time a node communicates with a remote node,
assigns a new TID for the remote node, and preserves
the local TID.

• When generating an event, records local TID, together
with the start and end time stamps.

• The first time of generating an event after a new
TID assigned, an additional event also created, called
edge1, recording the information of the causal rela-
tionship.

1Actually, an edge is sent together with the corresponding event in one
network packet.

Fig. 2(a) illustrates the execution process of an example
request, involving two nodes. Blue boxes represent functions,
and red arrows mean the startings of invocations, while green
means finishing. ST and ET abbreviate for start time and end
time, respectively. The numbers, also appeared in the column
of Location of Fig. 2(b), indicate the locations of generating
events and edges. Each one is explained as follows: (1) A
new trace starts, hence MTracer assigns a new TID, which is
TID1, to Node1, and a new event R1 generated subsequently,
recording TID1, ST1 and other information. Since R1 is the
first event after TID1 generated, an additional edge E1 is also
created, recording the relationship between the current event
and the former event, which is null for TID1. (2) Since this
is not the first time of generating an event after TID1 has
created, only R2 is generated. (3) F2 calls the remote function
F3 on Node2, and a new TID, i.e., TID2, is assigned to Node2,
and both R3 and E2 are generated. (4) Another remote call
induces another new TID, and R4 and E3 are generated. (5)
Only generates R5. By the way, an event is usually sent when
the invocation finishes.

B. Trace Reconstruction

According to the events and edges received, we can recon-
struct a trace on the server. The reconstruction procedure is
demonstrated in Fig. 2(c). Each step is explained as follows:

• Pick out all the events and the edges with a same
TraceID.

• Classify the picked events to different classes with
TID, i.e., all the events in one class have a same TID.

• Calculate the relationships of the events in each class
according to the time stamps. Since all the events
from one class are generated at a same node, the time
stamps can be compared with each other, avoiding
the famous problem of clock deviations in distributed
systems. For example, (R1.startTime < R2.startTime)
and (R1.endTime > R2.endTime) mean the operation
F1 starts earlier and finish later than F2, thus F1 is the
ancestor of F2 with respect to method call relation.
Because there is no other operation that is also the
ancestor of F2, F1 is the father of F2.

• Construct the relationships between classes using
edges. The event, identified by the fatherTID and
fatherST fields, is the father of all the events in the
class decided by the childTID field. For example, F2
is the father of F3 and F4.

Therefore, a trace can be expressed as a tree. A node in
a trace tree represents the execution of some code segments,
which are usually functions. The edges in the tree have many
meanings, such as F1 calls F2, F1 contains F5, and F2
communicates with F3. In general, we say F1 calls F2 if F1
and F2 belong to a same thread, and F1 triggers F2 if not.

IV. DATA STORING

Because we are using the client-server architecture, the per-
formance of our monitoring framework is basically determined
by the performance of the monitor server. When receiving an
event, the server first extracts the information, and then stores
the information. Currently, we use database for storing traces.

exist?

INSERT

T_Trace

UPDATE

T_Trace

SELECT T_Trace

write to T_Trace

INSERT

T_Event

write to T_Event

Containing

an edge?

INSERT

T_Edge

write to T_Edge

SELECT

T_Operation

exist?

INSERT

T_Operation

UPDATE

T_Operation

write to T_Operation

(a) Related database operations of storing an event.

write to

T_Trace

write to

T_Event

write to

T_Edge

write to

T_Operation

Event Extract

event
End

(b) Serial implementation.

extractor

TraceWriter EventWriter EdgeWiter OperationWriter

Q_Trace Q_Event Q_Edge Q_Operation

End

Event

(c) Parallel implementation.

Fig. 3. The implementation of data storing.

In our current implementation, there are following four
tables for trace recording: T Trace, which records the sum-
maries of traces, such as title and the number of events/edges;
T Event, which records the details of each event, including
name, start/end time, description, etc; T Edge, which stores the
context of edges; T Operation, which contains the summary
of each operation, e.g., the max/min/average latency of the
operation.

After extracting the information from an event, we will
execute some data storing operations, which are related to
above four tables, e.g., a new event will always cause the
insertion of a new record into T Event and an update in
T Operation. All the related operations for recording an event
are illustrated in Fig. 3(a).

A. Parallelization

A simple idea of recording an event is to carry out the
operations in Fig. 3(a) in sequence, as shown in Fig. 3(b).
However, this approach is really an inefficient method, since
at least five database operations (2 SELECTs, 3 INSERTs or
2 UPDATEs and 1 INSERT) are required in just one event
processing. In addition, this sequential method cannot be easily
parallelized, because a table is locked when being updated.

Based on the fact that the operations on different tables can
be carried out concurrently, we propose a concurrent method
for storing events, which is shown in Fig. 3(c). In principle,
we divide the operations according to tables. We maintain a
queue and a writer for each table. When an event arrives, the
extractor extracts the information and distributes the necessary
update information to different queues, then the writer of each
queue fetches the information from the queue and writes to
the corresponding table. Based on this idea, the writers and
the extractor can work in parallel, which can improve the
performance of the monitoring server.

B. Optimizations

Actually, database operations dominate the execution time
of the monitoring server, usually more than 90%. And, we
observe that it is not necessary to store an event immediately
after received. Hence, in addition to the preceding concurrent
method, we also propose two optimizations to speed up the
storing procedure, whose basic idea is to reduce the times of
database operations.

1) Batch inserting: The operations of T Event and T Edge
are only INSERT operations. Hence, we can use the batch
inserting of database to insert events and edges in a batch style.
Batch inserting inserts many records to a table in one time,
which is much more efficient than one by one. Take T Edge
for example. Instead of inserting the edges from Q Edge one
at a time, the writer, i.e, EdgeWriter, flushes all records in
Q Edge when the time from last flushing exceeds tedge or the
number of queued edges reaches nedge, using batch inserting.

The values of nedge and nevent should be chosen properly.
Too small, the benefit of batch inserting is not significant; too
big, the records in the queue would increase very fast during
batch inserting, resulting in losing data. In our experiences, we
set both of them to 10. With the same reason, choosing the
values of tedge and tevent should consider the balance between
effectiveness and realtime requirements, and we set both to 1
second.

2) Information updating in memory: Furthermore, based
on the parallelization method, we can optimize the procedure
of updating trace and operations information. Because some
information will be kept in the queue for a while before
updated to database, we can do the updating directly in
memory when it is still in the queue. For example, when
receiving an event, which needs to update the information of
the corresponding trace, such as increasing the event number
field by 1, if the trace is still in Q Trace, we can do the
updating directly in the memory, saving one time of database
querying and updating. As in previous optimization, when time
out or queued elements number reaches the threshold, we flush
all records in the queue.

The effectiveness of this optimization depends on the
situations of receiving events. Take T Trace for example. If
many received events belong to few traces, this optimization
will save many database operations. Oppositely, if all the
events are from different traces, there would be no effect.
Actually, in practice, we get the former situation in the actual
applications, i.e., the events received in a short period likely
belong to a same trace. By the way, ntrace, noperation, ttrace
and toperation should also be chosen properly.

V. VISUALIZATION

Based on the recorded traces of a monitored system, we
can inspect the system from different perspectives. Basically,
the inspections can be implemented as different queries to the
database. We have provided a web-based visualization fron-
tend for visualizing different queries, such as the operations
executed in a certain node and the traces generated during
last hour. In addition, some kinds of deeper data analyses,
such as the distribution of the operations in each node and
abnormal traces, are also supported. Due to the page limit, we
only introduce three of them.

(a) Trace classification. (b) A performance exception sample.

Fig. 4. Samples of visualization.

A. Trace Tree

Trace tree is a nature form for visualizing traces. A trace
tree clearly shows the details of the execution, including the
function calls, the communications between nodes, the latency
of each operation, etc. Fig. 4(b) displays a trace tree for a
request that is a removing request of a file in HDFS [13],
which we use as a case that will be described in the next
section. According to the trace, we can observe that the client
gets the information of the file from the Namenode first and
then asks for removing it. Three remote procedure calls (RPCs)
are made by client006, and the latency of each operation is also
marked in the tree.

B. Trace Classification

Since the requests of a same type may generate different
traces, we can classify the traces of a same request kind
according to the topological structures of trace trees. Based
on the topological structures, we can understand different
behaviors, or even functional exceptions, of a same request
type. In Fig. 4(a), the first two topologies represent the two
cases of the file read request in HDFS with different file
sizes, and the third one shows a failure. The reason of the
failure is that all the datanode processes are killed, and the
client can only get the file information from Namenode, but
cannot connect to Datanodes to get any data block. Hence, the
request failed. In addition, the number and the percentage of
the traces with a topology are also given, hence we can know
the frequency of a topology that the traces of a request type
will be.

C. Performance Problem Diagnosis

A performance problem diagnosis algorithm [12] is im-
plemented to locate the root causes of performance problems.
With the latency information recorded, we employ a PCA-
based analysis [12] to list the outliers of the traces with a same
topology, and mark the likely exception operations. Fig. 4(b)
shows an example of a trace tree with a performance problem,
and the red path is the suggested root cause. Note that, the
normal latency intervals are also shown next to the latency of
an exception node, to indicate how abnormal the latency of
the operation is.

VI. IMPLEMENTATION AND EXPERIMENTS

MTracer has been implemented in Java using MySQL
[15] as the database. The reporter, the receiver and the event

649

1289

4125

0

500

1000

1500

2000

2500

3000

3500

4000

4500

serial parallel optimized

Versions

S
p

ee
d

 o
f

S
en

d
in

g
E

v
en

ts
 (

/s
)

(a) Maximal speeds of different versions.

984 984 984 984 1785
4117 3109 2327

49356

21474 22256

5911

0

10000

20000

30000

40000

50000

60000

T_Trace T_Event T_Edge T_Operation

serial
parallel
optimized

Tables in Database

S
p

ee
d

 o
f

S
to

ri
n

g
 R

ec
o

rd
s

(/
s)

(b) Maximal speeds of different tables.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Speed of Sending Events (/s)

P
er

ce
n

ta
g
e

o
f

L
o

si
n

g
 E

v
en

ts

(c) Percentage of losing events on network.

Fig. 5. Experimental results.

translation protocol are adopted from X-Trace [4]. Other parts,
such as data collecting, storing and visualizing are totally
rewritten. The web-based UI is implemented in JSP and use
Graphviz [16] for drawing trace trees. Although we deploy
MTracer only on Linux, we believe it also works on other
OSs due to the independence of Java.

We have carried out extensive experiments to validate
MTracer in three aspects: overhead, effectiveness and usability.
We carried out our experiments in a real environment, which is
composed by the virtual machines (VMs) hosted on our private
IaaS platform. The virtual machines can be divided into three
types: small instance, with 0.5GHz CPU and 0.5GB memory;
medium instance, with 4x1GHz CPU and 1GB memory; large
instance, with 8x1GHz CPU and 2GB memory. The lengths
of the queues in MTracer are all set to 1024. The time-out and
queued record thresholds of each queue are set to 1 second
and 10, respectively.

A. Overhead

Basically, the overhead of the clients on the nodes of a
monitored system is our main concern. Since the overhead
to the monitored system is related to many factors, such as
the instrumentation number and the collected information, we
evaluate the overhead of generating one event, instead of the
influence to the whole system. We generated 10,000 events for
collecting elementary information, such as node address and
time stamps, and then take the average values as the results.
The experiments are carried out on small instance VMs.

The average time of generating an event is 0.046ms, which
is pretty acceptable, since many operations in distributed sys-
tems need seconds or minutes to finish. The size of an event is
0.315KB, which consumes less than 2MB bandwidth even the
monitor server reaches the upper limit, and 2MB is negligible
comparing to the GB-level network in the environment. It is
necessary to point out that generating random IDs is time-
consumed, which needs 0.057ms for each, and is even more
than generating an event. Fortunately, the strategy in MTracer
avoids generating a new ID for each event, which can reduces
the generations of lots of IDs, at least 50% less in our case.
Actually, more local invocations in a trace induce greater
reduction of IDs.

B. Effectiveness

Several methods are introduced to speed up the monitor
server. In this subsection, we discuss the benefits brought by

these methods. We use a large instance VM for the monitor
server and medium instance VMs for clients. The clients are
launched at the same time, and send events to the monitor
server concurrently. The speeds of sending are the same on
all clients, about 214 events per second, so that the speed of
receiving events on the monitor server can be calculated with
the number of clients. To decide whether the server reaches
its upper limit, we monitored the inner data structures. Once
the server starts to lose events, we consider that it reaches the
maximal speed.

Fig. 5(a) displays the comparison of the maximal speeds
of different MTracer versions, where serial means the version
updating database in sequence, parallel represents the version
implemented in parallel but without optimizations, and the
optimized means the parallel version with optimizations. The
parallel version doubles the speed of the serial version, and
the optimized version is about 7 times better. In other words,
the optimized version can process more than 4000 events per
second, which is basically enough for a medium-scale system.
In addition, proper values of the parameters in optimizations,
decided by the monitored system and the environment, may
bring a greater improvement in performance.

Fig. 5(b) shows the maximal speed comparison of each
version for different tables, which demonstrate the effective-
ness of the optimizations, i.e., storing more information to
database at one time. The effect on T Trace is the best. The
performance of optimization is 50 times better than that of the
serial version, which validates our intuition, i.e., the events
received in a short period are likely belong to one trace. Batch
inserting brings a same improvement to T Event and T Edge,
22 times, which may be better with a more proper parameter.
The least improvement is at T Operation, only 6 times, which
limits the whole efficiency. This is because the events received
in a short period do not likely contain a same operation.

In addition, we used UDP protocol to send events in our
experiments, where the percentage of losing events on network
is pretty low, less than 0.1%. Of course, the TCP pattern can
be selected if we do not want to lose events.

C. Usability

For validating the usability of MTracer, we instrumented
HDFS in Hadoop [13] to monitor the RPCs between the clients
and the Namenode, and the data accessing processes between
clients and the Datanodes. The experiment environment con-
tains 50 Hadoop clients deployed on medium instance VMs,

keeping sending different HDFS requests in various speeds,
50 Datanodes together with a Namenode deployed on medium
instance VMs too, and a monitoring server deployed on a
large instance VM. We also injected 14 faults into HDFS,
including functional and performance faults, such as data
block missing, network slowdown and datanode suspending.
MTracer can easily handle the generated events, and the UI
correctly visualizes the process of each request. The functional
exceptions caused by functional faults can be detected by
classifying traces, and the diagnosis algorithm can locate a part
of performance exceptions. Based on the theoretic calculation,
we believe that, with such an instrumentation, MTracer can
handle a HDFS cluster containing more than 200 nodes, with
a real workload reported by Ali-Hadoop [14].

VII. RELATED WORK

The most related work is X-Trace [4]. Actually, our
implementation is based on X-Trace. X-Trace captures the
causal path of a request crossing several network protocols
and then results a corresponding trace tree. Compared with X-
Trace, MTracer is more efficient because of the trace recording
method and the optimizations. In addition, X-Trace stores each
collected trace in a text file, hence suffers inflexible querying,
difficult management and safety problems. Finally, MTracer
provides a better visualization.

P-Tracer [5] is a performance profiling platform for large-
scale cloud computing systems, which records the request
traces of systems online. P-Tracer provides a suite of web-
based UI to query the statistical information of cloud services
for understanding the underlying cloud systems. P-Tracer
generates call trees using a map-reduce process, and stores
trace information in a key-value store system, which makes it
sometimes not easy to be adopted for medium-scale systems.
Same problem also exists for Zipkin [6], which is also a
distributed tracing system released by Twitter.

AppInsight [10] records the asynchronous and multi-
threaded nature for mobile apps. Because only system calls are
concerned with, AppInsight instruments apps in a fully auto-
matic manner, without requiring the source code or modifying
the OS. We believe MTracer can also be used as the monitoring
platform in the context of AppInsight. In addition, AppInsight
also provides a useful hint for our future case studies.

In addition, there also exist some black box monitoring
platforms, such as Project5 [11], that do not require the source
code of a monitored system, and use reasoning methods to
generating request traces. In practice, these approaches are less
flexible and less precise than the ones based on white box.

VIII. CONCLUSION AND FUTURE WORK

We present a trace-oriented monitoring system, MTracer,
for medium-scale distributed systems. MTracer is lightweight
and efficient. A frontend for visualizing request traces is
also provided to help system understanding and inspection.
Through the application on a real world distributed system in
a real environment, we validate the efficiency and the usability
of MTracer.

For future work, we will explore an easier way for instru-
menting. In addition, since HDFS is used as the application
system, maybe we could collect a set of user request trace
datasets, which can be used as the datasets for the request
trace-based research.

ACKNOWLEDGMENT

This work is fully supported by the National 973 Program
of China under the Grant No.2011CB302603.

REFERENCES

[1] Amazon, “Summary of the AWS service event in the US east region,”
http://aws.amazon.com/message/67457/, 2013.

[2] M. L. Massie, B. N. Chun., and D. E. Culler, “The ganglia distributed
monitoring system: design, implementation, and experience,” Parallel
Computing, vol. 30, no. 7, pp. 817–840, 2004.

[3] J. Boulon, A. Konwinski, R. Qi, A. Rabkin, E. Yang, and M. Yang,
“Chukwa, a large-scale monitoring system,” in Proc. of CCA, 2008.

[4] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica, “X-Trace:
A pervasive network tracing framework,” in Proc. of USENIX NSDI,
2007, pp. 271–284.

[5] H. Mi, H. Wang, H. Cai, Y. Zhou, M. R. Lyu, and Z. Chen, “P-Tracer:
path-based performance profiling in cloud computing systems,” in Proc.
of IEEE COMPSAC, 2012, pp. 509–514.

[6] Twitter, “Zipkin,” http://twitter.github.com/zipkin, 2013
[7] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal,

D. Beaver, et al., “Dapper, a large-scale distributed systems tracing
infrastructure,” Tech. Rep., Google, 2010.

[8] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier, “Using Magpie for
request extraction and workload modelling,” in Proc. of USENIX OSDI,
2004, pp. 18–33.

[9] E. Thereska, B. Salmon, J. Strunk, M. Wachs, M. Abd-El-Malek,
J. Lopez, et al., “Stardust: tracking activity in a distributed storage
system,” ACM SIGMETRICS Performance Evaluation Review, vol, 34,
no. 1, pp. 3–14, 2006.

[10] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan, I. Obermiller, and
S. Shayandeh. “AppInsight: mobile app performance monitoring in the
wild,” in Proc. of USENIX OSDI, 2012, pp. 107–120.

[11] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthi-
tacharoen, “Performance debugging for distributed systems of black
boxes,” ACM SIGOPS Operating Systems Review, vol. 37, no. 5, pp.
74–89, 2003.

[12] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide traffic
anomalies,” ACM SIGCOMM Computer Communication Review, vol.
34, no. 4, pp. 219–230, 2004.

[13] Apache, “Apache Hadoop,” http://hadoop.apache.org/, 2013.
[14] L. Liang, “Ali Hadoop cluster architecture and service system,” Con-

ference report, Hadoop & Bigdata Technology Conference, 2012.
[15] MySQL, “MySQL: the world’s most popular open source database,”

http://www.mysql.com/, 2013.
[16] Graphviz, “Graphviz: Graph visualization software,”

http://www.graphviz.org/, 2013.

