
AISE v2.0: Combining Loop Transformations
(Competition Contribution)

Yao Lin1,2
 

 

, Zhenbang Chen1,2(B)
 

 

⋆, and Ji Wang1,2
 

 

1 College of Computer Science and Technology, National University of Defense
Technology, Changsha, China

2 State Key Laboratory of Complex & Critical Software Environment, National
University of Defense Technology, Changsha, China

{linyao23,zbchen,wj}@nudt.edu.cn

Abstract. AISE is a C program verifier that synergizes symbolic execu-
tion and abstract interpretation. This year, AISE v2.0 introduces a loop
transformation scheme based on recurrence analysis to handle programs
involving nonlinear arithmetic. By combining loop transformations, AISE
v2.0 achieved a score of 1031 and won first place in the ReachSafety-Loops
category, demonstrating the effectiveness of the methods employed in
AISE v2.0.

1 Verification Approach

The key idea of AISE [19] is to synergize abstract interpretation [12] and symbolic
execution [7,15]. This synergy1 enables AISE to handle the program with loops
effectively. However, when the program involves nonlinear arithmetic, AISE still
suffers from the path explosion problem. To address this, we introduce a loop
abstraction method, which over-approximates the loop in the program based
on the invariant generated by the recurrence analysis [17,18]. Additionally, we
propose several other loop transformation methods to address different scenarios.

Figure 1 illustrates the workflow of AISE v2.0. Given a C program P, we
first compile it into LLVM IR format and then preprocess it using LLVM’s passes.
Next, AISE will be used to verify P. If AISE cannot finish within 60 seconds, the
loops in P will be transformed, generating four variants, i.e., NL, A, ANs, and E.
AISE then sequentially verify NL, A, and ANs to determine whether the properties
in P hold. If an unknown or violation occurs during this process, we will revert
to verifying P or E until timeout. Below, we introduce each loop transformation
and its role in verification.

Not entering the loop (NL). Figure 2b illustrates a scenario where the loop in
P is not entered. Since symbolic execution often "gets stuck" in loops, prioritizing
the analysis of this scenario may help reduce unnecessary overhead.

Loop abstraction (A). Inspired by the loop abstraction method [13], we use an
invariant-based loop abstraction here to tackle the challenge brought by loops.
Figure 2c shows the abstracted program A. Intuitively, A represents the set of
⋆ Jury member
1 Due to space limitations, further technical details can be found in [19].

https://orcid.org/0009-0004-0979-7340
https://orcid.org/0000-0002-4066-7892
https://orcid.org/0000-0003-0637-8744


2 Y. Lin et al.

Fig. 1: The workflow of AISE v2.0 (P: the original program, NL: not entering the
loop, A: loop abstraction, ANs: loop abstractions with one negated property in
each, E: the program with inv instrumented, T: True, F:False, U:Unknown)

all possible behaviors that could occur during any iteration of the loop in P.
In Figure 2c, Line 2 represents the non-deterministic assignments to the vari-
ables modified in the Loop body (denoted as changed_vars), which describes
all possible states of all variables in the Loop body at the beginning of the loop’s
any iteration. Line 3 and Line 9 ensure the correct semantics of entering and
exiting the loop, respectively. To improve the precision of abstraction, we use
recurrence analysis [17,18], which captures the numerical relationships of vari-
ables using real arithmetic, to generate the loop invariant (inv) and add it in
Line 4. However, when the loop involves integer division, rounding issues may
cause the inv to fail to satisfy the inductiveness. Therefore, additional checks2

(Line 7) are needed to verify the inductiveness of inv. If inv is violated, we will
remove it from the transformed program and generate another invariant (which
is included in each analysis step in Figure 1). Notably, recurrence analysis [17,18]
only plays the role of generating inv, and inv can also be produced by other loop
invariant generation techniques. Due to Line 1, the symbolic execution of A also
covers the case not entering the loop (i.e., NL).3 For nested loops, we abstract
the innermost loop first and then progressively abstract each outer loop before
verification. By verifying that p1 and p2 hold in A, we can conclude that these
properties also hold in P. However, when verification fails, whether the property
in P is violated cannot be determined, as it may be a false positive due to the
over-approximation of the loop abstraction in A.

Loop abstraction with one negated property (AN). AN is generated from A with
only one property negated. If a violation occurs when verifying A, we will first
confirm it by verifying ANs. AN1 (Figure 2d) and AN2 (Figure 2e) are the ANs
generated from A (Figure 2c). If we ignore assertions, we can also say that ANs are
the over-approximation of P. If the assertions in AN1 and AN2 are all reachable in
P and the verification result of either is true, we can conclude that one property
in P will be violated while the remaining properties will hold. For example, if

2 inv_assert here functions like assert, but with a different name for distinction.
3 Because of development time limitations, the scenarios described by NL and A overlap,

which will be optimized in the future.



AISE v2.0: Combining Loop Transformations 3

1 while(c1){
2 Loop body;
3 assert(p1);
4 }
5 assert(p2);

(a) Original loop (P)

1 assume(!c1);
2 assert(p2);

(b) Not entering
the loop (NL)

1 if(c1){
2 changed_vars=nondet();
3 assume(c1);
4 assume(inv);
5 Loop body;
6 assert(p1);
7 inv_assert(inv);
8 }
9 assume(!c1);

10 assert(p2);

(c) Loop abstraction (A)

1 if(c1){
2 changed_vars=nondet();
3 assume(c1);
4 assume(inv);
5 Loop body;
6 assert(!p1);
7 inv_assert(inv);
8 }
9 assume(!c1);

10 assert(p2);

(d) Loop abstraction
with p1 negated (AN1)

1 if(c1){
2 changed_vars=nondet();
3 assume(c1);
4 assume(inv);
5 Loop body;
6 assert(p1);
7 inv_assert(inv);
8 }
9 assume(!c1);

10 assert(!p2);

(e) Loop abstraction
with p2 negated (AN2)

1 while(c1){
2 Loop body;
3 assume(inv);
4 assert(p1);
5 inv_assert(inv);
6 }
7 assert(p2);

(f) Loop with inv
instrumented (E)

Fig. 2: Illustration of the loop transformation scheme

the assertions in AN1 are all reachable in P and we can prove that !p1 and p2
hold in AN1, then we can conclude that !p1 and p2 also hold in P, that is to
say, the assert(p1) in P will be violated. During preprocessing, we use LLVM’s
passes to remove the unreachable basic blocks in P, ensuring that all assertions
in ANs are reachable in P. If unreachable assertions still remain in ANs after
transformation, this approach may result in false positives.

Loop with invariant (E). This variant in Figure 2f is the last step of confirming
the violation, i.e., employing AISE to check the violation. However, different from
P, we add the invariant inv in Line 3, which improves the efficiency of symbolic
execution by leveraging the invariant to accelerate constraint solving process.

2 Implementation

The Loop Transformer of AISE v2.0 is based on LLVM [1]. AISE’s abstract inter-
pretation module is CLAM [2,14], configured as in [19]. AISE’s symbolic execution
module is based on BUBAAK-LEE [3] (a fork of KLEE [10] used in the BUBAAK [11])
with some improvements. We improve the solver part by supporting floating-
point programs and employing the theory of integer as an additional option
(KLEE uses bit-vector theory by default) for solving path conditions. The sym-
bolic execution module of AISE first uses Z3 [16] to check formulas’ satisfiability,
and switches to CVC5 [8] if Z3 times out. The Invariant Generator is based
on c_convertor [4], which summarizes loops by computing closed-form solu-
tions for each variable in the loop body [17] or for the polynomial expressions



4 Y. Lin et al.

Table 1: The contribution of each method
total AISE+P AISE+NL AISE+A AISE+ANs AISE+E

total correct 603 528 0 66 8 1
correct true 428 362 0 66 0 0
correct false 175 166 0 0 8 1
total correct-unconfirmed 73 49 0 23 0 1
total incorrect 0 0 0 0 0 0

score 1031 890 0 132 8 1

extracted from the loop body [18]. Besides fixing some bugs, we have optimized
the Invariant Generator by considering branch conditions and the initial as-
signments of variables.

3 Result and Discussion

This year, by combining (1) the synergy between abstract interpretation and
symbolic execution and (2) a recurrence analysis based loop transformation
scheme, AISE v2.0 scored 1031 points and won first place in the ReachSafety-
Loops category, demonstrating its capability in verifying the programs with
loops. Table 1 presents the contribution of each method. As shown by the table,
the synergy in AISE is effective for most programs, and when it fails within 60
seconds, loop transformations can further enhance AISE’s ability. Due to lack of
invariant in correctness witnesses, we still have 73 unconfirmed results. AISE v2.0
could not produce any results in the AISE+NL phase due to the program’s small
size, and it may perform better on larger programs. When handling programs
with arrays or loops containing multiple branches, both CLAM and Invariant
Generator may not work, causing AISE v2.0 to still suffer from the path explo-
sion problem. Additionally, the SMT solvers encounter difficulties when solving
nonlinear constraints, further limiting the verification capabilities of AISE v2.0.
Since we only consider whether the program is correct when it terminates, AISE’s
verify method currently cannot handle programs with non-terminating loops.

4 Software Project, Tool setup and Contributors

AISE v2.0 can run on the Ubuntu 22.04/24.04 LTS and is licensed under GPL
3.0. This year, AISE v2.0 participates in the ReachSafety-Loops category of SV-
COMP 2025 [9]. The execution command of AISE v2.0 is as follow:

./bin/aise <data_model> <program>

Where <data_model> is the program’s data model (32-bit or 64-bit) and
<program> is the input program. The contributors of AISE v2.0 are all from the
National University of Defense Technology. A complete list of contributors is
available at [5].



AISE v2.0: Combining Loop Transformations 5

Data-Availability Statement The artifact for AISE v2.0 has been archived
and is available on Zenodo [6].
Acknowledgement This research was supported by National Key R&D Pro-
gram of China (No. 2022YFB4501903) and the NSFC Programs (No. 62172429
and 62032024).

References

1. LLVM. https://llvm.org, accessed 2024-12-11
2. CLAM repository. https://github.com/seahorn/clam (2022)
3. BUBAAK-LEE repository. https://github.com/mchalupa/bubaak-lee (2022)
4. c_convertor repository. https://github.com/psy054duck/c_convertor (2024)
5. Contributors list of AISE. https://github.com/zbchen/aise-verifier/blob/

master/Contributors.txt, accessed 2025-1-23
6. AISE artifact. https://zenodo.org/records/14203693 (2024)
7. Baldoni, R., Coppa, E., Delia, D.C., Demetrescu, C., Finocchi, I.: A survey of sym-

bolic execution techniques 51(3) (May 2018). https://doi.org/10.1145/3182657
8. Barbosa, H., Barrett, C., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mo-

hamed, A., Mohamed, M., Niemetz, A., Nötzli, A., et al.: cvc5: A versatile and
industrial-strength smt solver. In: International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems. pp. 415–442. Springer (2022)

9. Beyer, D., Strejek, J.: Improvements in software verification and witness validation:
SV-COMP 2025. In: Proc. TACAS. LNCS, Springer (2025)

10. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Draves, R., van Renesse,
R. (eds.) 8th USENIX Symposium on Operating Systems Design and Implementa-
tion, OSDI 2008, December 8-10, 2008, San Diego, California, USA, Proceedings.
pp. 209–224. USENIX Association

11. Chalupa, M., Henzinger, T.A.: Bubaak: Runtime monitoring of program verifiers:
(competition contribution). p. 535540. Springer-Verlag, Berlin, Heidelberg (2023).
https://doi.org/10.1007/978-3-031-30820-8_32

12. Cousot, P.: Abstract interpretation. ACM Comput. Surv. 28(2), 324328 (Jun
1996). https://doi.org/10.1145/234528.234740

13. Darke, P., Chimdyalwar, B., Venkatesh, R., Shrotri, U., Metta, R.: Over-
approximating loops to prove properties using bounded model checking. In: 2015
Design, Automation & Test in Europe Conference & Exhibition (DATE). pp. 1407–
1412 (2015). https://doi.org/10.7873/DATE.2015.0245

14. Gurfinkel, A., Navas, J.A.: Abstract interpretation of llvm with a region-based
memory model. p. 122144. Springer-Verlag, Berlin, Heidelberg (2021). https://
doi.org/10.1007/978-3-030-95561-8_8

15. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (Jul 1976). https://doi.org/10.1145/360248.360252

16. de Moura, L.M., Bjørner, N.S.: Z3: An efficient smt solver. In: International Con-
ference on Tools and Algorithms for Construction and Analysis of Systems (2008)

17. Wang, C., Lin, F.: Solving conditional linear recurrences for program verification:
The periodic case. Proc. ACM Program. Lang. 7(OOPSLA1) (Apr 2023). https:
//doi.org/10.1145/3586028

https://llvm.org
https://github.com/seahorn/clam
https://github.com/mchalupa/bubaak-lee
https://github.com/psy054duck/c_convertor
https://github.com/zbchen/aise-verifier/blob/master/Contributors.txt
https://github.com/zbchen/aise-verifier/blob/master/Contributors.txt
https://zenodo.org/records/14203693
https://doi.org/10.1145/3182657
https://doi.org/10.1007/978-3-031-30820-8_32
https://doi.org/10.1145/234528.234740
https://doi.org/10.7873/DATE.2015.0245
https://doi.org/10.1007/978-3-030-95561-8_8
https://doi.org/10.1007/978-3-030-95561-8_8
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/3586028
https://doi.org/10.1145/3586028


6 Y. Lin et al.

18. Wang, C., Lin, F.: On polynomial expressions with c-finite recurrences in loops
with nested nondeterministic branches. In: Computer Aided Verification: 36th In-
ternational Conference, CAV 2024, Montreal, QC, Canada, July 2427, 2024, Pro-
ceedings, Part I. p. 409430. Springer-Verlag, Berlin, Heidelberg (2024). https:
//doi.org/10.1007/978-3-031-65627-9_20

19. Wang, Z., Chen, Z.: AISE: A symbolic verifier by synergizing abstract in-
terpretation and symbolic execution (competition contribution). In: Proc.
TACAS (3). pp. 347–352. LNCS 14572, Springer (2024). https://doi.org/10.
1007/978-3-031-57256-2_19

https://doi.org/10.1007/978-3-031-65627-9_20
https://doi.org/10.1007/978-3-031-65627-9_20
https://doi.org/10.1007/978-3-031-57256-2_19
https://doi.org/10.1007/978-3-031-57256-2_19

	AISE v2.0: Combining Loop Transformations 

