
Collaborative Verification of Uninterpreted
Programs

Yide Du1, Weijiang Hong1,2, Zhenbang Chen1(�), and Ji Wang1,2

1 College of Computer, National University of Defense Technology, Changsha, China
2 State Key Laboratory of High Performance Computing, National University of

Defense Technology, Changsha, China
{dyd1024,hongweijiang17,zbchen,wj}@nudt.edu.cn

Abstract. Given a set of uninterpreted programs to be verified, the
trace abstraction-based verification method can be used to solve them
once at a time. The verification of different programs is independent of
each other. However, the individual verification for each one is a waste
of resources if the programs behave similarly. In this work, we propose a
framework for the collaborative verification of a set of uninterpreted pro-
grams, which accumulates and reuses the abstract models of infeasible
traces to improve the verification’s efficiency. We have implemented the
collaborative verification framework and the preliminary result demon-
strate that our collaborative method is effective on the benchmark.

Keywords: Collaborative verification · Uninterpreted programs · CE-
GAR.

1 Introduction

An uninterpreted program [11] is a program that works with arbitrary data
models and all of its functions have only a signature information and satisfy the
common property, i.e., same inputs produce same outputs. Given a program P
to be verified, we can over-approximate P by an uninterpreted version Pu and
do the verification. In most cases, the verification of Pu has a lower complexity.
However, even for uninterpreted programs, the verification problem is in general
undecidable [11]. Recently, a decidable class of uninterpreted programs called
coherent ones has been discovered [11]. Based on this result, a more effective trace
abstraction-based CEGAR-style [7] verification method for general uninterpreted
programs is proposed [8].

We notice that all this work are focus on the verification problem of a single
program, but there are many scenarios that a set of programs need to be ver-
ified. For example, the incremental verification plays an important role in the
area of regression verification as it can significantly improve the verification effi-
ciency. During software development, only part of the software be changed and
due to the high complexity of program verification, there is no need to verify the



2 Yide Du et al.

changed version from scratch. There are similar behaviors between different pro-
grams. Exploiting the similarity between softwares and reusing the verification
results is an effective way to improve the efficiency of verification.

In this work, we propose a collaborative verification method to reuse the abstract
models of infeasible traces during the CEGAR-style verification across different
programs to improve the efficiency of verification.

The main contributions of this paper are as follows:

– We propose a framework for collaborative verification that can reuse the
abstract models of infeasible traces to improve the efficiency of verification.

– We have implemented our framework in a prototype for uninterpreted pro-
grams and the preliminary result demonstrate that our collaborative method
is effective on the benchmark.

Structure. The remainder of this paper is organized as follows. Section 2 gives
a motivation example. The collaborative verification framework will be given in
Section 3. Section 4 gives the preliminary evaluation results. Finally, Section 5
compares the related work, Section 6 introduces the next steps, and Section 7
concludes the paper.

2 Motivation

1 x := y;
2

3 if (z != n1){
4 x := g(x);
5 y := g(y);
6 } else {
7 x := f(x);
8 y := f(y);
9 }

10

11 assert(x = y);

(a) P0

1 x := y;
2

3 if (z != n1){
4 x := h(x);
5 y := h(y);
6 } else {
7 x := f(x);
8 y := f(y);
9 }

10

11 assert(x = y);

(b) P1

Fig. 1. The motivation example.

In Figure 1 there are two uninterpreted programs in which P1 is obtained by
modifying the program P0. Notice that all the traces of these two programs
satisfy the equality of x and y at beginning, then apply the same functions on
both x and y, so all of them satisfy the assertion in the end. If we use the CEGAR



Collaborative Verification of Uninterpreted Programs 3

method with the congruence-based abstraction in [8] to verify them, we need 2
iterations, respectively.

We observe that P1 is the modified version of P0 and the false branch of them are
the same. Therefore, we can conclude that the false branch of P1 is correct when
P0 is verified to be correct, only the true branch of P1 need to be verified. In the
scenario of software development and evolution, most of the traces are the same
between two successive versions, it’s no need to verify them from scratch. Based
on these observations, we propose a collaborative verification method that reuses
the abstract model of infeasible traces to improve the verification’s efficiency.
Next, we demonstrate the process of our collaborative verification method on
this motivation example.

We use AC to represent the accumulated model of infeasible traces, and L(AC)
is empty at the beginning. First, P0 is verified to be correct by the CEGAR
method, and the abstract models of the infeasible traces in P0 are merged with
AC . When P1 is to be verified, its false branch can be removed by performing
AP1

= AP1
\ AC and the true branch can be verified by the CEGAR method.

It takes only 2 and 1 iterations of refinement to successfully verify P0 and P1

respectively. Intuitively, the closer the programs to be verified, the more effective
our collaborative verification method is.

3 Collaborative Verification Framework

We propose a collaborative verification framework based on the scheme of CE-
GAR for trace abstraction, which accumulates the abstract models of infeasible
traces during the verification procedure, and the accumulated abstract models
are later reused to facilitate other program’s verification. The details can be
found in Figure 2.

Our collaborative verification framework introduces an initial empty automata
AC to accumulates the abstract models during the verification progress. When
verifying a set of programs S, we pick one program P from them and abstract
it to an FSA AP which include all the traces of P. Then we wipe off those
infeasible traces included in AC by AP = AP \ AC . During the verification,
we can conclude that P is correct if L(AP) = ∅ holds, otherwise, a trace t can
be extracted from L(AP). If t is feasible, a real counter-example is found, and
we can conclude that P is incorrect. Otherwise, we can abstract an FSA An+1

from t which accept all the infeasible traces that with the same reason with
t. Then, AP can be refined by An+1. The CEGAR process continues until a
feasible counter-example is found or P is concluded to be correct.

After the verification of each program is completed, the abstract models obtained
during the verification process can be merged with AC for reusing. When a new
program is to be verified, AC can be used to refine the program abstraction. The
infeasible traces included in AC can be removed directly without the CEGAR



4 Yide Du et al.

Program
Set S

AC

AP = AP \ AC

AP = AP ∩ A1 ∩ ... ∩ An

L(AP) = ∅?

Is t feasible?

P is
correct

P is
incorrect

¬ abstract
P ∈ S as AP

 Yes

® Yes

No,
get a trace
t ∈ AP

®No,
An+1 = gen(t)

¯ AC = AC ∪ A1 ∪ ... ∪ An

° S = S \ P

Fig. 2. Collaborative verification framework.

process. Thus, our framework shares the abstract models of infeasible traces
within the programs in S to improve the verification’s efficiency.

4 Preliminary Result

We have implemented a prototype for our collaborative verification framework in
OCaml. We prepare to evaluate our collaborative verification framework on a set
of similar programs. In the scenario of regression verification, during the software
development and evolution, only part of the software be changed between two
successive software versions and most of the program behavior is similar. Based
on this scenario, we evaluate our collaborative method to answer the following
question.

Efficiency, i.e., how efficient is our collaborative verification method com-
pared to verifying each program individually when there are a set of unin-
terpreted programs to be verified?

Considering that there is no standard benchmark for similar programs, we con-
vert some real-world programs from SV-COMP[15] to uninterpreted programs.
These programs can be used as original programs in regression verification. To
simulate the software evolution process, we randomly extract 10 correct pro-
grams as the initial programs and mutate them. Therefore we have 10 groups of
similar programs that simulate software evolution.

All the experiments are carried out on a server with eight cores and 32G memory.
The operating system is Ubuntu 18.04. We use the average value of three runs
to eliminate the experimental errors.



Collaborative Verification of Uninterpreted Programs 5

The collaborative verification method is effective if the abstract models we col-
lected reduces the number of refinements and further reduces the time cost of
verification. We evaluate the collaborative verification method on the benchmark
that simulates software evolution. Our preliminary results demonstrate that our
collaborative verification method is effective, for the average speedups of 2.70x
(1.11x ∼ 3.84x) on the benchmark.

5 Related Work

There are many existing works for collaborative verification. In some works
[4][5][3], different verification tools are collaborated in different ways to improve
verification efficiency and the ability to detect assertions. These methods have
achieved good results, but all of them focus on a single program, while our work
consider a set of similar programs. Such as the scenario of regression verifica-
tion, the incremental verification is an efficient way to improve the verification’s
efficiency. There are different approachs to implement collaborative verification
in different verification tools. For example, the function summaries [14], the
abstraction precisions[2], the procedure summaries the state-space modeled by
automata [1,10], and the loop summaries [6], the assertions in predicate analy-
sis [16] and the counter-example traces [3] are reused to improves the efficiency
of regression verification. Our approach reuses the abstract models of infeasible
traces to improve the efficiency of verification.

Uninterpreted programs and their verification problems have been studied in
many works. A decidable class of uninterpreted programs was found by Mathur
et al. [11], based on this result, many decidable results [13,9,12] are proposed for
different types of programs. For the verification problem of general uninterpreted
program, CEGAR-based verification provide a general framework. A congruence-
based trace abstraction method for infeasible traces was proposed by Hong et
al.[8] and is more efficient than the interpolant-based trace abstraction method
[7]. In this work, we implemented our collaborative verification framework based
on Hong et al.[8]’s work.

6 Next Steps

The abstract models of infeasible traces are critical for the verification’s effi-
ciency, the better the generalization of the trace abstract models are, the less
number of the program’s refinement need. We studied the existing trace abstrac-
tion method [8] and found that the method does not distinguish the different
reasons why a trace is infeasible. So we intend to propose a fine-grained gener-
alization method to improve the generalization’s ability.

Except for the scenario of regression validation, we are intend to consider more
scenarios in which our approach is applicable, such as the component-based soft-
ware development. In this scenario, programs are obtained by composing several
designed components, and their behavior are similar. In the later evaluation,



6 Yide Du et al.

we are intend to explore the effect of different factors on the efficiency of our
collaborative verification method, such as the verification order of programs and
the different proportion of correct programs.

Furthermore, we plan to extend our collaborative verification framework to more
types of programs and different verification tools.

7 Conclusion

This paper propose a collaborative verification framework for a set of uninter-
preted programs. In some scenarios such as software development, there are
similar traces between this set of uninterpreted programs. So we preserve the
abstract models of infeasible traces during the verification process, when a new
program is to be verified, the saved abstract models can be reused to do a
refinement on it, thereby speeding up the overall verification speed. We have im-
plemented our method and the preliminary results demonstrate that our method
performs better on the benchmark.

Acknowledgments. This research was supported by the NSFC Programs (No.
62172429 and 62032024).

References
1. Beyer, D., Holzer, A., Tautschnig, M., Veith, H.: Information reuse for multi-goal

reachability analyses. In: European Symposium on Programming. pp. 472–491.
Springer (2013)

2. Beyer, D., Löwe, S., Novikov, E., Stahlbauer, A., Wendler, P.: Precision reuse for
efficient regression verification. In: Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering. pp. 389–399 (2013)

3. Beyer, D., Wendler, P.: Reuse of verification results. In: International SPIN Work-
shop on Model Checking of Software. pp. 1–17. Springer (2013)

4. Christakis, M., Müller, P., Wüstholz, V.: Collaborative verification and testing
with explicit assumptions. In: International Symposium on Formal Methods. pp.
132–146. Springer (2012)

5. Csallner, C., Smaragdakis, Y.: Check’n’crash: Combining static checking and test-
ing. In: Proceedings of the 27th international conference on Software engineering.
pp. 422–431 (2005)

6. He, F., Yu, Q., Cai, L.: Efficient summary reuse for software regression verification.
IEEE Transactions on Software Engineering (2020)

7. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In:
International Static Analysis Symposium. pp. 69–85. Springer (2009)

8. Hong, W., Chen, Z., Du, Y., Wang, J.: Trace abstraction-based verification for
uninterpreted programs (accepted). In: Formal Methods, FM 2021, Beijing, China,
November 20-26, 2021, Proceedings (2021)

9. La Torre, S., Parthasarathy, M.: Reachability in concurrent uninterpreted pro-
grams. In: 39th IARCS Annual Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science (FSTTCS 2019). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik (2019)



Collaborative Verification of Uninterpreted Programs 7

10. Lauterburg, S., Sobeih, A., Marinov, D., Viswanathan, M.: Incremental state-space
exploration for programs with dynamically allocated data. In: 2008 ACM/IEEE
30th International Conference on Software Engineering. pp. 291–300. IEEE (2008)

11. Mathur, U., Madhusudan, P., Viswanathan, M.: Decidable verification of uninter-
preted programs. Proceedings of the ACM on Programming Languages 3(POPL),
1–29 (2019)

12. Mathur, U., Madhusudan, P., Viswanathan, M.: What’s decidable about program
verification modulo axioms? In: International Conference on Tools and Algorithms
for the Construction and Analysis of Systems. pp. 158–177. Springer (2020)

13. Mathur, U., Murali, A., Krogmeier, P., Madhusudan, P., Viswanathan, M.: Decid-
ing memory safety for single-pass heap-manipulating programs. Proceedings of the
ACM on Programming Languages 4(POPL), 1–29 (2019)

14. Sery, O., Fedyukovich, G., Sharygina, N.: Incremental upgrade checking by means
of interpolation-based function summaries. In: 2012 Formal Methods in Computer-
Aided Design (FMCAD). pp. 114–121. IEEE (2012)

15. SV-benchmarks: https://github.com/sosy-lab/sv-benchmarks
16. Yu, Q., He, F., Wang, B.Y.: Incremental predicate analysis for regression verifi-

cation. Proceedings of the ACM on Programming Languages 4(OOPSLA), 1–25
(2020)


	Collaborative Verification of Uninterpreted Programs

