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Abstract

The Service Component Architecture (SCA) provides a platform-independent component model for service-
oriented development. A service component with different communication mechanisms and implementation
languages can be modeled in SCA. However, it lacks a formal foundation for SCA-based system specification
and verification. This paper presents a formal service component signature model with respect to the spec-
ification of the SCA assembly model. Inspired by the idea of independence in SCA, a language-independent
dynamic behaviour model is proposed for specifying the interface behaviour of the service component by
port activities. Based on the dynamic behaviour model, the compatibility relation between components is
discussed. A set of transition rules are given to map Business Process Execution Language for Web Services
(BPEL) to dynamic behaviour expressions and then to Petri nets, thus the service component based system
can be verified with existing tools. A case study is demonstrated to illustrate how to use our approach to
constructing a web application in a rigorous way.
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1 Introduction

Nowadays service orientation becomes an important theme in software development.
Based on the emerging computer network technologies, Service Oriented Comput-
ing (SOC) enables an environment in which software can be collaboratively and
remotely developed rather than just locally developed. The key idea in SOC is the
Service-Oriented Architecture (SOA), which provides a new paradigm for the ex-
istence and development of software system. Currently, many industrial standards
are proposed in the spirits of SOA, such as Web services [25] and Open Services
Gateway Initiative (OSGI) [22]. Though many specifications are presented in those
standards, the main attention is usually put on the service communication and com-
position, such as SOAP [26], BPEL [1], etc. How to implement a service and what
the service programming model is are still problems. Recently, in the background
of SOA, the Service Component Architecture (SCA) [3] is proposed for facilitating
the implementation of service based systems. The SCA definition from the official
site [3] is as follows:

“Service Component Architecture is a set of specifications which describe a model
for building applications and systems using a Service-Oriented Architecture.”

Besides that, SCA provides a language-independent way to define and compose ser-
vice components in the system, and it also supports different language-specific ways
to implement the components including Java, C++, etc. SCA complements some
service composition languages (such as BPEL) for enabling the more convenient
and efficient service-based development.

From the SCA specification document [3], we can see that the SCA assembly
model lacks a formal definition, and only static signature information of the service
component can be defined. As a service programming model [2], it is not enough
for SCA to just provide informal definitions by which only the static signature
information can be defined. A rigorous definition for the programming model is
required, and a model for specifying the dynamic behaviour of the service-based
system is also needed. In addition, how to ensure the correctness of the service-
based system is also an important problem for service-based development.

The contributions of this paper contain four parts. Firstly, a formal service com-
ponent signature model is presented with respect to the specification of the SCA
assembly model. Secondly, based on the signature model, a language-independent
dynamic behaviour model is proposed for specifying the interface behaviour of the
service component by port activities. Thirdly, a method for translating BPEL to
the dynamic behaviour expression is given for showing that the dynamic behaviour
model is rich enough in expressivity. Lastly, based on the dynamic behaviour model,
we present a verification method for the service component based system by trans-
lating the dynamic behaviour model to a Petri nets and using the existing tools for
verification.

Through our approach, the component structure of the SCA assembly model is
defined rigorously, and some structure constraints are especially reflected. The syn-
tax and semantics of the dynamic behaviour model can capture two different types
of communications, and support the component composition directly. The devel-
oper of the service component based system can use our approach to understanding
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SCA correctly, and specifying the service component formally for verification to
ensure the correctness and decrease the errors in development.

The paper is organized as follows. In Section 2, a component model for the
assembly model in SCA is presented and the operational semantics of the dynamic
behaviour model is given. Section 3 models BPEL interface behaviour with SCA
and verifies BPEL process by mapping dynamic behaviour expressions to Petri nets.
Section 4 is a case study to illustrate the formalism and the verification. In Section
5, the related work is reviewed and compared. Section 6 concludes the paper and
discusses some future directions.

2 Component Model for SCA

SCA aims to encompass a wide range of technologies for service components and
for the accessing methods which are used to connect them. One basic artifact of
SCA is the service component, which is the construction unit for service-oriented
system.

2.1 Service Component Model

A service component may provide or require some services, which can be described
by the operation activities as well-defined business function. Component interaction
is through message exchange, and the business flow can be represented by the
message exchange flow. A service component is a configured instance of a component
implementation. A component provides and consumes services via ports as shown
in Fig. 1.

Fig. 1. SCA component diagram

Ports represent the addressable interfaces of the component and the requirement
that the component has on a service provided by other component. Each component
offers the business functionalities through ports, and a set of methods are contained
in each port. In SCA, if the component provides a service through a port, the port
is called service port ; if the component requires a service through a port, the port
is called reference port. Beside that, two communication types can be supported
by the port in SCA: synchronous communication, which means that the sending
side needs to wait until the result is received; asynchronous communication, which
means that the sending side can proceed without waiting for the result. The formal
definition of a port is given as follows.

Definition 2.1 [Port] A port p is a tuple (M, t, c), where M is a finite set of meth-
ods, t is the port type that can be provided or required, and c is the communication
type that can be synchronous or asynchronous.

Each method is of the form op(T x ; T y), where op is the method name, T x

and T y are the input and output parameter lists, in which T is the parameter
type and x, y are the parameter names. We use p.M to denote the method set
of port p, p.t to denote the port type, and p.c to denote the communication type.
Two ports p1 and p2 are equal iff they have same methods and types, that is,
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p1.M = p2.M ∧ p1.t = p2.t ∧ p1.c = p2.c. For the sake of simplicity, we use !p to
denote the provided port (service port), ?p to denote the required port (reference
port), •p to denote the synchronous port, and �p to denote the asynchronous port.

Fig. 2. SCA composite diagram

The SCA assembly model consists of a series of artifacts which define the config-
uration of an SCA domain in terms of composites. A composite contains assemblies
of service components, the connections and related artifacts which describe how
they are linked together. The composite diagram is shown in Fig. 2. An SCA wire
within a composite connects source component required port to target component
provided port. If a link is from service port to service port or from reference port
to reference port, then it is called promote. In addition, a component can be imple-
mented by a composite, which means that the component can be hierarchical. From
the SCA specification, a unified static signature definition for SCA components and
composites is given as follows.

Definition 2.2 [Component] A component Com is a tuple (Pp, Pr, G,W ), in which
Pp is a finite set of provided ports, Pr is a finite set of required ports, G is a finite
sub component set, W ⊆ TP ×

⋃
C∈G(C.Pp ∪ C.Pr) is the port relation that is non-

reflexive, where TP = Pp ∪ Pr ∪
⋃
C∈GC.Pr, C.Pp and C.Pr denote the provided

and required port sets of the sub component C respectively.

A component Com = (Pp, Pr, G,W ) is an atomic component if G = ∅, otherwise
Com is a composite. A port relation (p1, p2) is a promote if p1.t = p2.t, and (p1, p2)
is a wire if p1.t = required ∧ p2.t = provided. In SCA specification, there are some
constraints on the static signature definition of composite, such as the wire compat-
ibility. Consistency has been defined to represent that the component is statically
well-composed [17].

Besides the static consistency checking, the formal reasoning or verification dur-
ing the development process cannot be supported using the static signature infor-
mation. We use port activities to describe the component dynamic behavior, the
basic activity of which is assumed to be the message exchange between two ports.
The syntax of the component dynamic behaviour expression is defined as follows.

Here b represents the boolean expression, whose definition is omitted, and m

stands for the message. p •m represents that the port p sends the message m

synchronously, but p is not wired with any reference port. p1 •m p2 represents that
the port p1 synchronously sends the message m to the port p2. α represents a set
of ports. The meanings of the other basic activities are similar.

BE[p1/p2] is the syntactic renaming, which just replaces each p2 in BE

with p1, and can be used for specifying the promote element in SCA composite.
BE[p1 → p2] is used to specify the wiring operation, which is the syntactic
transformation defined as follows (� ∈ {•m, ◦m,�m,♦m}).
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BE ::= p •m (Synchronous sending message)
| p1 •m p2

| p ◦m (Synchronous receiving message)
| p1 ◦m p2

| p �m (Asynchronous sending message)
| p1�mp2

| p ♦m (Asynchronous receiving message)
| p1♦mp2

| stop (Stop)
| BE ; BE (Sequence)
| BE / b . BE (Condition)
| b ∗BE (Loop)
| BE uBE (Non-determinism)
| BE ‖ BE (Parallel)
| BE[p1/p2] (Renaming)
| BE \ α (Restriction)
| BE[p1 → p2] (Wiring)

BE[p1 → p2] =



p2 •m p1 BE = p •m ∧p = p2
p1 ◦m p2 BE = p ◦m ∧p = p1
p2�mp1 BE = p �m ∧ p = p2
p1♦mp2 BE = p ♦m ∧ p = p1

BE1[p1 → p2] ; BE2[p1 → p2] BE = BE1 ; BE2
BE1[p1 → p2] / b . BE2[p1 → p2] BE = BE1 / b . BE2

b ∗BE1[p1 → p2] BE = b ∗BE1
BE1[p1 → p2] uBE2[p1 → p2] BE = BE1 uBE2
BE1[p1 → p2] ‖ BE2[p1 → p2] BE = BE1 ‖ BE2

BE1 \ α BE = BE1 \ α ∧ (p1 ∈ α ∨ p2 ∈ α)
BE1[p1 → p2] \ α BE = BE1 \ α ∧ (p1 /∈ α ∧ p2 /∈ α)

BE BE = p1 � p2

From the syntax of dynamic behaviour expression, we can see that the ports for
message exchange do not need to have the same methods, and the information of
the communicating ports will be gotten after wiring.

2.2 Operational Semantics

The operational semantic of the dynamic behaviour expression will be presented in
this subsection. We use the classical Labelled Transition System (LTS) to define
an operational semantics, and the small-step operational semantics is adopted here.
The transition label a can be the message activity or the internal action (τ). We use
O(a) to denote the communication type of the message activity a: O(p1 � p2) = �,
O(p �) = �, where � ∈ {•m, ◦m,♦m,�m}.

For interpreting the semantics of asynchronous communication, the configura-
tion of the transition system is 〈BE, E〉, where BE is the behaviour expression and
E is the global asynchronous activity queue, which is unbounded. We use E_a
to represent the resulting queue after adding activity a to the end of E , E \ a to
represent the resulting queue after removing the first activity a in E , and a ∈ E to
represent that the activity a is contained in the queue E . In the following definitions,
BE is used to abbreviate 〈BE, E〉 if no conflict exists.
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The basic synchronous semi-message activity does not have the complete com-
municating partner information, which will be achieved in the future. We adopt
an optimistic semantics at here, and assume that the component environment will
always provide a legal support for the semi-message activities in the component
behaviour expression, so the basic synchronous semi-message activity will always
complete. After getting the complete port information, the basic synchronous mes-
sage activity can complete after synchronization.

p •m
p •m−−−→ stop p1 •m p2

p1•mp2−−−−→ stop

p ◦m
p ◦m−−−→ stop p1 ◦m p2

p1◦mp2−−−−→ stop

The transition of basic asynchronous semi-message activity is similar to that of
the synchronous one. The sending of asynchronous message will add the activity to
the global queue. If the corresponding sending activity exists in the global queue, the
asynchronous receiving activity can complete and the first appeared corresponding
activity is removed from the global queue.

p �m
p �m−−−→ stop 〈p1�mp2, E〉

p1�mp2−−−−−→ 〈stop, E_p1�mp2〉

p ♦m
p ♦m−−−→ stop

p2�mp1 ∈ E

〈p1♦mp2, E〉
p1♦mp2−−−−−→ 〈stop, E \ p2�mp1〉

There are two rules for the sequential behaviour composition BE1;BE2. The
second rule means that the completion of the first behaviour will begin the second
one.

BE1
a−→ BE′1

BE1;BE2
a−→ BE′1;BE2

BE1
a−→ stop

BE1;BE2
a−→ BE2

The semantics of condition expression is also defined by two rules. The eval-
uation of boolean expression b can be true or false, which determines the one for
executing.

b = true ∧BE1
a−→ BE′1

BE1 / b . BE2
a−→ BE′1

b = false ∧BE2
a−→ BE′2

BE1 / b . BE2
a−→ BE′2

The loop expression will continue if the boolean expression is evaluated to be
true, otherwise it will complete.

b = true ∧BE1
a−→ BE′1

b ∗BE1
a−→ b ∗BE′1

b = false

b ∗BE τ−→ stop

The non-determinism expression can select any one branch for execution, and
the semantics rules can be given as follows.

BE1
a−→ BE′1

BE1 uBE2
a−→ BE′1

BE2
a−→ BE′2

BE1 uBE2
a−→ BE′2
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The parallel expression will have different cases. If the two wired component can
take the synchronous communication, they will both transit to the next configura-
tion, and the global transition action is the internal action τ , which represents that
the communication cannot be observed from the outside of the composite containing
those two components.

BE1
p1•mp2−−−−→ BE′1 ∧BE2

p2◦mp1−−−−→ BE′2

BE1 ‖ BE2
τ−→ BE′1 ‖ BE′2

The transition of internal action or semi-message activity in one component will not
need the participation of the other component, so it will not block the behaviour.

BE1
a−→ BE′1

BE1 ‖ BE2
a−→ BE′1 ‖ BE2

(a ∈ {τ, p �})

The asynchronous message activity will also not block, but it cannot be observed
from the outside of the composite.

BE1
a−→ BE′1

BE1 ‖ BE2
τ−→ BE′1 ‖ BE2

(a = p1�mp2 ∨ a = p1♦mp2)

The switching of the expressions of the parallel expression will not change the be-
haviour.

BE1 ‖ BE2
a−→ BE3

BE2 ‖ BE1
a−→ BE3

The message exchange can only occur between non-restricted ports.

BE1
a−→ BE2

BE1 \ α
a−→ BE2 \ α

(a = p1 �m p2 ∨ a = p1�m) ∧ (p1 /∈ α ∧ p2 /∈ α)

The stop represents the termination of the dynamic behaviour, and it cannot engage
in any action.

The dynamic behaviour of the component can be interpreted by the sequences
of actions. A finite action trace tr is a1, a2, ..., an. We use BE tr−→ BE′ to represent
that BE can transit to BE′ by the preceding operational semantics rules, and the
transition sequence is the action trace tr, that is, BE a1−→ BE1, ..., BEn−1

an−→ BE′.

2.3 Component Composition

In an SCA composite, the wires can be generated automatically. This feature can be
reflected by the automatic composition, which can automatically relate the required
ports and provided ports of two components, and generate the resulting composite
by promoting the remaining non-wired ports.

At the signature level, two components Comi = (P ip, P
i
r , Gi,Wi) (i ∈ {1, 2}) are

composable if they do not provide the same port, that is, P 1
p ∩ P 2

p = ∅. We define
the automatically related required port set as follows:

Mp(Com1, Com2) = (P 1
r C P 2

p ) ∪ (P 2
r C P 1

p ),
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where Pr C Pp = {p | p ∈ Pr ∧ (p.M, provided, p.c) ∈ Pp}. The automatically gener-
ated wire set can be defined as follows:

Mw(Com1, Com2) = {(p1, p2) | p1 ∈Mp(Com1, Com2)∧
p2 = (p1.M, provided, p1.c)}.

The automatic composition is defined as follows, where the definition of the wire
set operation is:

BE[W ] =
{

BE if W = ∅,
BE[p1 → p2][W \ {(p1, p2)}] (p1, p2) ∈W.

Definition 2.3 [Automatic Composition] Given two composable components
Comi = (P ip, P

i
r , Gi,Wi) and their dynamic behaviour expressions BEi (i ∈ {1, 2}),

their automatic composition Com = (Pp, Pr, G,W ) (denoted by Com1 ⊕ Com2) is
defined as follows:
(1) Pp = (P 1

p ∪ P 2
p ) \ {(p.M, provided, p.c) | p ∈Mp}; (2) Pr = (P 1

r ∪ P 2
r ) \Mp;

(3)G = G1 ∪G2;(4)W =Mw ∪ {(p, p) | p ∈ Pp ∪ Pr};(5)BE = (BE1 ‖ BE2)[Mw],
where Mp and Mw are the abbreviations for Mp(Com1, Com2) and
Mw(Com1, Com2) respectively.

Theorem 2.4 Com1 ⊕ Com2 = Com2 ⊕ Com1.

Theorem 2.5 If Mp(Comi, Comj) ∩Mp(Comi, Comk) = ∅, where i, j, k ∈ {1, 2,
3}, i 6= j, i 6= k, and j 6= k, then (Com1 ⊕ Com2)⊕ Com3 = Com1 ⊕ (Com2 ⊕ Com3).

Definition 2.6 [Promoting] Given a component Com = (Pp, Pr, G,W ) and a pro-
mote (p1, p2), and the dynamic behaviour expression of Com is BE, where
p2 ∈ Pp ∪ Pr, the dynamic behaviour expression of the resulted component after
promoting is BE[p1/p2].

Based on the promoting definition and the behaviour semantics, the composition
of specific port relation can be defined as follows, where the definition of promote
set operation is:

BE〈W 〉 =
{

BE W = ∅,
BE[p1/p2]〈W \ {(p1, p2)}〉 (p1, p2) ∈W.

Definition 2.7 [Composition] Given two composable components Comi = (P ip,
P ir , Gi,Wi), their dynamic behaviour expressions BEi (i ∈ {1, 2}), and a port rela-
tion set W , the specific composition of Com1 and Com2 under W is Com = (Pp, Pr,
G,Wc) (denoted by Com1 ⊕W Com2), which is defined as follows:
(1) Pp = {p1 | (!p1, !p2) ∈W};(2) Pr = {p1 | (?p1, ?p2) ∈W};(3) G = {G1, G2};
(4) Wc = W ; (5) BE = (BE1 ‖ BE2)[Ww]〈Wp〉, where Ww ={(p1, p2) |
(p1, p2) ∈W ∧ p1.t 6= p2.t}, and Wp = {(p1, p2) | (p1, p2) ∈W ∧ p1.t = p2.t}.

Theorem 2.8 Com1 ⊕W Com2 = Com2 ⊕W Com1.

Lemma 2.9 Com1 ⊕ Com2 = Com2 ⊕W Com1, where W =Mw(Com1, Com2) ∪
{(p, p) | p ∈ ((P 1

p ∪ P 2
p ) ∪ (P 1

r ∪ P 2
r )) \ (Mp ∪ {(p.M, provided, p.c) | p ∈Mp})},

and Mp is the abbreviation for Mp(Com1, Com2).

Through the above definitions, we can calculate the dynamic behaviour ex-
pression of the composite based on the dynamic behaviour expressions of the con-
tained components. Given the composite Com = (Pp, Pr, G,W ), and the dynamic
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behaviour expressions of the sub components, the dynamic behaviour expression
BE of Com can be calculated as follows: BE = Π{BEC | C ∈ G}[Ww]〈Wp〉, where
ΠB = B1 ‖ ... ‖ Bn if B = {B1, ..., Bn}, Ww ={(p1, p2) | (p1, p2) ∈W∧ p1.t 6= p2.t},
and Wp = {(p1, p2) | (p1, p2) ∈W ∧ p1.t = p2.t}.

With the assumption that the environment will always provide what the com-
ponent needs, the dynamic behaviour compatibility between two components only
requires that the dynamic behaviour of the composed composite can complete, which
can be defined as follows.

Definition 2.10 [Compatibility]Given two components Com1 and Com2, their dy-
namic behaviour expressions BE1 and BE2, and a port relation W , Com1 and Com2

are compatible under W (denoted by CompW (Com1, Com2)) if the following con-
ditions hold: (1) Com1 and Com2 are composable; (2) there exists an action trace
tr such that BE tr−→ stop, where BE is the dynamic behaviour of Com1 ⊕W Com2.

3 SCA Modeling and Verification of BPEL

BPEL [1] is an XML language that supports service composition and can be used
to describe executable business process behavior. WSDL is now a standard for
describing its interfaces. WSDL proposes a model containing two parts: in the first
part there are methods; the second part defines the messages each method can send
and receive. However, WSDL addresses only static interface specifications and it
does not describe the observable behavior of the web service. We show that, as a
language-independent dynamic behaviour model, SCA can be used to model the
interface behavior of BPEL.

In BPEL, the participating services are called partners, and message exchange
or intermediate result transformation is called an activity. A process thus consists
of a set of activities. A process interacts with external partner services through a
WSDL interface. An interaction is characterized by the partner link, the port type,
and the operation involved in the two communicating partners (each partner defines
these three elements for each interaction). We say that an interaction corresponds
to a port of a component. For example, if an interaction is to receive a request from
a client,

〈receive partnerLink = ”client”
portType = ”com : InsuranceSelectionPT”
operation = ”SelectInsurance”
variable = ”InsuranceRequest”
createInstance = ”yes”/〉

then there is a port p=(M, t, c), where

M = {SelectInsurance(T InsuranceRequest; )},
t=provided,

c=asynchronous.

In this example, the partnerLink, portType and createInstance are all contained in
the message and will be used in the management components in the future. In this
paper, we only consider functionality components.
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BPEL supports primitive and structural activities. Primitive activities repre-
sent basic constructs and are used for common tasks, structural activities manage
the control flows. Some commonly used activities are: 〈invoke〉, 〈receive〉,〈reply〉,
〈sequence〉, 〈flow〉, 〈switch〉, 〈while〉, 〈pick〉, etc.

By defining some transition rules for these constructs, we may map a BPEL
process model to an SCA model, and then following the sematic model in Section
2, we can study the dynamic behaviour of BPEL. Due to the space limit, the rules
can be refered to [17].

BPEL provides no way to verify correctness. A few works have been done to
overcome the this problem such as mapping BPEL to LOTOS [8], translating BPEL
into FSP [14], analyzing BPEL composite web services communicating through
asynchronous messages [15], etc. Our solution is mapping dynamic behaviour ex-
pressions of SCA to Petri nets, so that we can use the existing net tools for the
verification. In this way, the BPEL process model may get the following benefits:
1) it has strong scalability and can manipulate both control and data, 2) it can
be verified, and 3) it stands a good position for service substitution [17]. Another
reason choosing Petri net as a verification method is due to the work by Tsai and
Xu [24]: Petri-nets, as the intermediate formal basis, can be transformed into the
input languages of existing analysis tools such as SPIN, SMV, SMC, and IOTA.

By setting some rules, we can transform component dynamic behaviour expres-
sions to Petri nets [16]. The details can be found in [17].

4 Case Study

In this section we present an online shop as our example process. It is a simple but
realistic business process.

The process is structured into two concurrent activities: customers initial choice
and order processing. These activities are synchronized by two order links. Hence,
the order processing is started only if the customer sends an order right at the
beginning or he sends a request, the product is available, and he decides to order
after getting the confirmation. Assuming the customer has ordered a product, he
gets the invoice or he is asked questions concerning his order exactly once. The
payment is handled by charging the credit card. Finally, the process sends the
delivery data.

The interface of the service is defined by WSDL and the interaction is defined
by BPEL4WS. We may get the SCA model by transforming WSDL/BPEL defines
to dynamic behavior expressions. The SCA model of the online shop is shown in
Figure 3.

Fig. 3. SCA model of online shop.

For example, ports

p11
request = ({request(T Req; T Resp)}, provided, synchronous),

p11
check = ({check(T checkReq; T checkResp)}, required, synchronous),
p11

order = ({order(T orderReq; T orderResp)}, required, synchronous),
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form atomic component C11 = INIT with dynamic behavior expression

BE11 = p11
request ; (p11

check / b . p
11
order ).

Ports p12
check, p

12
reject and p12

order form atomic component C12 = ORDER with dynamic
behavior expression

BE12 = p12
check; (p12

reject / b . p
12
confirm); p12

order .

Ports p21
order , p21

question, p21
update and p21

invoice form atomic component C21 = INVOICE
with dynamic behavior expression

BE21 = p21
order ; p21

question; p21
update; p

21
invoice.

Ports p22
invoice, p

22
paycheck and p22

deliver form atomic-component C22 = PAYMENT with
dynamic behavior expression

B22 = p22
invoice; p

22
paycheck; p

22
deliver.

Let C1 be the automatic composition of components C11 and C12, then C1 =
C11 ⊕ C12 = (P 1

p , P
1
r , G1,W1), where

P 1
p =P 11

p ∪ P 12 \ {(p.M, provided, p.c)|p ∈Mp)}
= {p11

request, p
12
reject},

P 1
r =P 11

r ∪ P 12
r \Mp(C11, C12)

= {p12
confirm , p

11
order , p

12
order , p

11
check} \ {p11

check}
= {p12

confirm , p
11
order , p

12
order},

G1 = {},
W1 =Mw ∪ {(p, p)|p ∈ P 1

p ∪ P 1
r }

= {(p11
check, p

12
check)} ∪ {(p, p)|p ∈ P 1

p ∪ P 1
r }

= {(p11
check, p

12
check)} ∪ {(p11

request, p
11
request),

(p11
order , p

11
order ), (p12

reject , p
12
reject),

(p12
confirm , p

12
confirm), (p12

order , p
12
order )},

BE1 = (BE11‖BE12)[{(p12
check → p11

check)}].
Similarly, we can get the automatic composition of components C21 and C22 as

C2 = C21 ⊕ C22 = (P 2
p , P

2
r , G2,W2) with behaviour expression:

BE2 = (BE21‖BE22)[{(p22
invoice → p21

invoice)}].
Assume that port relation set is W = W1∪W2∪{(p1

order , p
2
order )}, then a semantic

model of dynamic behavior of online shop, denoted as SCAonline, would be

SCAonline = C1 ⊕W C2

with behaviour expression:

BE = (BE1‖BE2)[Ww]〈Wp〉,

11



where Ww = {(p1, p2)|(p1, p2) ∈W ∧ p1.t 6= p2.t},
and Wp = {(p1, p2)|(p1, p2) ∈W ∧ p1.t = p2.t}.

Our interest is located in computing the dynamic behavior BE. Based on
Lemma 1,

SCAonline = C1 ⊕W C2 = C1 ⊕ C2.

Thus, the dynamic behavior

BE = (BE1‖BE2)[Mw]
=BE1[Mw]‖BE2[Mw],

where

Mw = {p12
check → p11

check, p
22
invoice → p21

invoice, p
21
order → p12

order , I = User − Inputs}.

As an example we compute BE1 to illustrate our method:

BE1 = ((BE11[Mw])‖(BE12)[Mw]),

where

BE11[Mw]
= (p11

request◦; (p11
order� / b . p

11
check•))[Mw]

I= p11
request ◦ [{I, . . . }]; (p11

order� / b . p
11
check•)[{p12

check → p11
check, . . . }]

= stop; (p11
order� / b . p

11
check•)[{p12

check → p121
check, . . . }]

= (p11
order�[{. . . }] / b . p11

check•)[{p12
check → p11

check, . . . }]
check= p11

check • [{p12
check → p11

check, . . . }]
= p11

check • p12
check

and

BE12[Mw]
= (p12

check◦; (p11
reject • /b . p11

confirm◦); p12
order�)[{p12

check → p11
check, I, . . . }]

= p12
check ◦ [{(p12

check → p11
check)}];

(p11
reject • /b . p11

confirm◦)[{I, . . . }]; p12
order�)[{p21

order → p12
order}]

= p12
check ◦ p11

check; p
11
confirm • [{I, . . . }]; p12

order�[{p21
order → p12

order , . . . }].
Thus,

BE1 = (p11
check • p12

check)‖(p12
check ◦ p11

check; p
11
confirm • [{I, . . . }];

p12
order�[{(p21

order → p12
order , . . . }])

= stop ‖ (stop; p11
confirm • [{I, . . . }]; p12

order�[{p21
order → p12

order , . . . }])
= p11

confirm • [{I, . . . }]; p12
order�[{p21

order → p12
order , . . . }]

= stop; p12
order�[{p21

order → p12
order , . . . }]

= p12
order�p

21
order .

After translating the dynamic behavior expression into a Petri nets, we can
perform the analysis on the SCA model of the online shop by the following two ways:
either using net tools such as Design/Net [6], or converting the Petri-net model into

12



the input languages of analysis tools such as SPIN, SMV, SMC, and IOTA [24]. In
Design/CPN, we can perform two kinds of analysis through simulation. The first can
be done on the standard simulation report directly, which includes Boundedness and
Liveness properties. The second is performed based on user-defined queries about
the Occurrence Graph, which is the state space of the model.

5 Related Work

Because SCA is a new proposed specification, there are few existing work in formal-
ization and verification for SCA. In [13], a small core formal language (SRML-P) is
presented to specify the interaction protocol between components. SRML-P follows
the ideas in SCA and provides a mathematical framework in which some service-
modeling primitives are defined and application models can be reasoned about.
Based on the primitives, some communication paradigm can be specified, such as
synchronous, asynchronous, timeout, etc. Besides that, the proposed concepts, such
as modules and external interface, are also related to the modeling elements in SCA.
Compared with the work in [13], our work directly formalizes the SCA assembly
model and the service dynamic behaviour model also supports synchronous and
asynchronous communication.

In the implementation level, [4,27] propose formal models to formalize XML-
based Web service languages. In [27], H. Yang et al. propose a formal model to
WS-CDL to guarantee the correct interaction of independent web services. Based
on the this model, it is possible to formally reason about the choreography in a
manual way. In [4], Antonio Brogi et al. formalize WSCI using CCS. Compatibility
and replaceability between Web services are discussed. In [23], G. Pu et al. develop
semantics for BPEL and then to verify BPEL. Compared with them, we are con-
cerned with the interface dynamic behavior from an orchestration view, and apply
our platform-independent description mechanism to BPEL. In [28], CSP is directly
used to formalize WS-CDL and BPEL, and verification can be taken after trans-
lation. We share the idea of using existing tools for verification, and the dynamic
behavior model is proposed according to the SCA specification, which is convenient
to model the system using SCA.

In component based development (CBD), how to construct composite compo-
nents from existing ones is not new [11,12]. In the object-oriented programming
community, there has been extensive research on attacking this issue, such as Su-
perGlue [21], Jiazzi [20], the calculus of assemblages [19], etc. However, our model
is constructed based on the service. It is not only directly for internet use but
also provides dynamic property check in composition. When chaining components
together, the verification and calculation should be based on the semantics of the
behavior. In [7], static structure, dynamic behavior and refinement of component
systems is proposed based on UML 2.0 superstructure. Interface Protocol State
Machine (IPSM) in UML 2.0 is used to specify the interface behaviour and contract
automata is presented as the transition model of IPSM. The component structure
model is also hierarchical, and the stateless operation feature is included in the con-
tract automata. Compared with the work in [7], we unify the component definition
using port, and take into account different communication types in the behaviour

13



model.

6 Conclusion

We have proposed a rigorous approach to supporting service oriented development
based on service component. Service component is modeled according to the stan-
dard of service component architecture issued recently. Dynamic behavior expres-
sion is developed to describe the composition activities in service composition. A
set of transition rules are given to map BPEL to dynamic behavior expression, thus
the service composition process can be verified with Petri net. A case study is given
to show how to use this approach to constructing web based software in a rigorous
way.

Our future work includes introducing agents to route service, in order that a
source can easily find the target one. We will also look into adaptable service com-
ponent architecture to improve the adaptability of the component to the environ-
ment. It will be an interesting research topic to investigate how different verification
techniques and tools can be applied.
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