
An Operational Semantics for Model Checking
Long Running Transactions

Hengbiao Yu1,2, Zhenbang Chen1,2?, and Ji Wang1,2

1 College of Computer, National University of Defense Technology, Changsha, China
2 Science and Technology on Parallel and Distributed Processing Laboratory,

Changsha, China
fishzqyhb@gmail.com,{zbchen,wj}@nudt.edu.cn

Abstract. Compensating CSP (cCSP) is an extension to CSP for mod-
eling long running transactions (LRTs). In our work, we extended the
original cCSP with the ability of modeling non-determinism, deadlock
and livelock. Until now, there is only a failure-divergence semantics for
the extended cCSP, and there is no model checking or animating tool for
it. In this paper, we present an operational semantics for model checking
the extended cCSP. We prove that the general problem of model check-
ing the extended cCSP with respect to regular properties is undecidable.
Using the operational semantics, we have implemented an animator and
a prototype model checker for the extended cCSP based on the platform
Process Analysis Toolkit (PAT). In addition, a case study is given to
demonstrate the tool.

Keywords: Long Running Transactions, Extended cCSP, Model Check-
ing, Operational Semantics.

1 Introduction

Service-Oriented Computing (SOC) [18] provides a new computing paradigm
for distributed computing. In SOC, services are supposed to be loosely coupled,
widely located and provided by different organizations. Usually, a task in SOC is
accomplished by a coordination of different services, and the coordination is often
carried out by a third party. How to ensure the consistency of a task in case of a
service failure is not an easy job. The classical ACID transaction model [12] is not
realistic for this scenario, because the third party cannot isolate the resources
of service providers. There are other consistency mechanisms for distributed
systems, such as two-phrase protocol [15], but they are not appropriate for SOC
either, especially on Internet.

Recently, long-running transaction (LRT) [12] models, such as SAGA [11],
are used as a mainstream approach [19] for ensuring the consistency of service

? Corresponding author.

2 Yu and Chen and Wang

coordinations. An LRT in SOC usually involves the interactions with multiple
services, and needs a certain period to complete. The most important notion
in LRTs is compensation, which is used for state recovery in case of a failure.
Until now, many industrial service composition languages, such as WS-BPEL
[1] and XLANG [22], have used LRT models and provided compensation-based
LRT programming facilities.

In order to ensure the correctness of the LRTs in SOC, some formal languages
have been proposed to specify and verify LRTs, including StAC [4], SAGAs cal-
culi [3], cCSP [5], etc. These formalisms can be used not only as the theoretical
foundations for the rigorous design of LRTs, but also as the basis for the appli-
cation of verification techniques, such as model checking and theorem proving,
to improve the reliability of service coordinations. Compensating CSP (cCSP)
extends CSP [20] with backward recovery mechanism [11]. In cCSP, there are two
kinds of processes and they are standard processes and compensable processes.
Standard processes are basically CSP processes extended with exception han-
dling processes and transaction block processes. A compensable process specifies
the recovery behaviour of an LRT.

The original cCSP in [5] is given with a trace-based denotational seman-
tics and later with an operational semantics in [6]. In [7], cCSP is extended to
support non-determinism and deadlock modeling enabled by a stable-failures
semantics. Later, cCSP is further extended in [8][9] with recursion and we call
this version the extended cCSP. A failure-divergence (FD) semantics and a re-
finement calculus are presented in [8][9]. Thus, the extended cCSP has the fully
expressive power, as that of CSP for modeling standard communicating pro-
cesses, for describing all features of LRTs, including compensation, backward
recovery, non-determinism, deadlock, livelock, etc. However, until now, there is
no operational semantics for this cCSP. In the result of it, no model checker
or animator exists for the extended cCSP, which brings difficulties to the LRT
modeling and verification using the extended cCSP.

To this end, we define an operational semantics in this paper for the extended
cCSP. It follows the ideas in the definitions of the operational semantics [6] for
the original cCSP. Based on the operational semantics, we have implemented an
animator and a prototype model checker for the extended cCSP. Furthermore,
the derivation of the FD semantics [9] from the operational semantics is given.
The model checking problem of the extended cCSP with respect to regular prop-
erties is studied, and we prove that the problem is undecidable in general. In
addition, we have carried out a case study to justify our tool. To the best of
our knowledge, our tool is the first one supporting LTL modeling checking and
refinement checking for LRTs.

The rest of this paper is organized as follows. We give a brief introduction to
the extended cCSP in Section 2. Section 3 presents the operational semantics and
the derivation of FD semantics from the operational semantics. Section 4 studies
the model checking problem with respect to regular properties and introduces

An Operational Semantics for Model Checking Long Running Transactions 3

our prototype tool for the extended cCSP. Section 5 demonstrates the tool by a
case study. Section 6 discusses and compares the related work. Finally, Section
7 draws conclusions and points out future work.

2 Extended Compensating CSP

The extended cCSP [9] extends cCSP by distinguishing internal and external
choices, and incorporating the operators of synchronized parallel composition,
hiding, renaming and recursion. Assuming Σ is a finite set of normal events that
the processes of the extended cCSP can perform, the syntax of the extended
cCSP is presented in the follows, where a ∈ Σ, X ⊆ Σ is a finite event subset,
and ρ ⊆ Σ ×Σ is a renaming relation.

P ::= a | P ;P | P u P | P�P | P ‖
X

P | P \X | P JρK | P B P | [PP] | skip |

throw | yield | µ p.F (p)

PP ::= P÷P | PP ;PP | PP u PP | PP�PP | PP ‖
X

PP | PP � PP | PP \X |

PP JρK | skipp | throww | yieldd | µ pp.FF (pp)

The extended cCSP has two kinds of processes: the standard processes ranged
over by P , and the compensable processes ranged over by PP . Process a ter-
minates successfully after performing event a. The sequential composition P ;Q
executes P first, then executes Q if P terminates successfully; the choice between
P and Q executes either P or Q, the selection in external choice P�Q depends
on which one is first to be able to start, while in internal choice P uQ, it is non-
deterministic; the process P and Q in P ‖

X

Q will synchronize on any event in X;

P \X represents that any event in X in the execution of P will be invisible; P JρK
renames the events in the execution of P , according to the binary relation ρ; an
exception handling process P B Q will execute Q when P throws an exception,
otherwise it behaves like P ; transaction block [PP] provides a way to convert a
compensable process to a standard process; there are three primitive standard
processes: skip immediately terminates successfully, yield will yield to an inter-
rupt or terminate successfully, and throw represents an exception happens and
the process will be interrupted; µ p.F (p) represents a recursive process whose
behavior is defined by the function F (p).

The operators on compensable processes are similar to those in standard pro-
cesses. A compensable process is composed by compensation pairs of the form
P÷Q, in which P is the forward process, and Q is the compensation process that
can compensate the effects caused by P . The meanings of most composition op-
erators are similar to those of the operators in standard processes. In the choice
process, forward processes make the choices of the compositions. The synchro-
nized parallel composition (‖

X

), hiding(\), and renaming (JρK) affect both the

forward processes and the compensation processes. PP �QQ represents a spec-

4 Yu and Chen and Wang

ulative choice that executes PP and QQ in parallel until one of them succeeds,
then the other one will be compensated. Similar to standard processes, there
are three primitive compensable processes: skipp is a special compensation pair
that both the forward process and the compensation process are skip, throww

will immediately throw an exception, and yieldd will yield to an interruption or
terminate successfully.

3 Operational Semantics

3.1 Basic Notations

Let Ω={X, !, ?} be disjoint with Σ. Events in Ω are called terminals and they
indicate different terminating scenarios: “X” indicates that the process termi-
nates successfully, “!” means that the process terminates with an occurrence
of an exception, and “?” represents that the process terminates by yielding to
an interruption from environment. In addition, we introduce a special event
τ /∈ Σ ∪Ω, called invisible event, and τ is invisible to the outside of any process.
We use Aτ as the shorthand for A ∪ {τ}. Thus, the processes of the extended
cCSP can perform the events in Γ τ , where Γ = Σ ∪Ω.

Let A∗ denote the set of finite sequences of the elements in a set A of symbols,
s·t the concatenation of sequences s and t, s \ a the resulting sequences after
removing each occurrence of a from s, and T1·T2 the set of concatenated sequences
of the sequence sets T1 and T2. In particular, for a non-empty set B, let AF

B=A∗·B
denote the set of the sequences of A terminated with an element in B, and let
A~
B=A∗ ∪AF

B. We use AF and A~ as the shorthands of AF
Ω and A~

Ω. In particular,
Σ∗ is the set of interaction traces of the extended cCSP processes, and ΣF is the
set of terminated traces of the extended cCSP. We use ε to denote the empty
trace. For the sake of brevity, in the following, we use a to represent the event,
the process that performs a and then successfully terminates, or the trace of the
single event a, depending on its context.

There are rules for the processes in the extended cCSP to follow to synchro-
nize on different terminals. We order the three terminals such that ! ≺ ? ≺ X,
define ω1 ‖ ω2 = ω1 if ω1 � ω2, and ω1 ‖ ω2 = ω2 ‖ ω1. Therefore, the synchroniza-
tion of any terminal with an exception will result in an exception, and a com-
posite process terminates successfully iff both parties do.

3.2 Semantics of Standard Processes

In this subsection, we give the small step operational semantics for standard
processes. The semantics decribes how a standard process evolves to another
process by performing an event. We introduce a special standard process 0,
which represents the null process that cannot evolve anymore. For a standard

An Operational Semantics for Model Checking Long Running Transactions 5

process P , if P can preform a terminal event ω ∈ Ω, then P evolves to 0 and
finishes, i.e., P

ω−→ 0. The hiding and renaming operators do not have any effect
on the null process, i.e., 0 \X = 0 and 0JρK = 0. If P is not the null process 0, it
will continue to evolve except when a deadlock happens.

In the following semantic definitions, we use process P ′ to represent the new
process of P after performing an event. The definitions for atomic and basic
processes, sequential composition and exception handling are basically the same
as those in [6].

Atomic and Basic Processes. The atomic event process a performs the event
a and evolves to the process skip. The primitive processes skip and throw will
perform the terminal events X and ! and become the null process, respectively.
For defining yield, we introduce interp that represents a process that is inter-
rupted and terminates. The process yield will continue or be interrupted in a
non-deterministic style.

a
a−→ skip skip

X−→ 0 throw
!−→ 0 interp

?−→ 0 yield
τ−→skip yield

τ−→interp

Choices. If P and Q are standard processes, the internal choice P uQ behaves
either like P or Q, the selection depends on the actual execution of the process
and is non-deterministic. We use τ to make this choice. For an external choice
P�Q, if any sub-process can perform an event, the composite process can perform
the event.

P uQ τ−→ P P uQ τ−→ Q
P

e−→ P ′

P�Q
e−→ P ′

(e ∈ Γ τ)
Q

e−→ Q′

P�Q
e−→ Q′

(e ∈ Γ τ)

Sequential Composition. In a sequential composition P ;Q, if P terminates
successfully, Q can continue to evolve; otherwise, the whole process evolves as
same as P .

P
e−→ P ′

P ;Q
e−→ P ′;Q

(e ∈ Στ)
P

X−→ 0 ∧Q e−→ Q′

P ;Q
e−→ Q′

(e ∈ Γ τ)
P

ω−→ 0

P ;Q
ω−→ 0

(ω ∈ {!, ?})

Exception Handling. The definition of exception handling operator is similar
to that of sequential composition, except that Q is enabled if P terminates with
an exception.

P
e−→ P ′

P . Q
e−→ P ′ . Q

(e ∈ Στ)
P

!−→ 0 ∧Q e−→ Q′

P . Q
e−→ Q′

(e ∈ Γ τ)
P

ω−→ 0

P . Q
ω−→ 0

(ω ∈ {?,X})

Parallel Composition. P ‖
X

Q represents the synchronized parallel composi-

tion of the processes P and Q. If P or Q performs a non-terminal event that is
not in X, the process can perform it independently.

P
e−→ P ′

P ‖
X

Q
e−→ P ′ ‖

X

Q
(e ∈ Στ \X)

Q
e−→ Q′

P ‖
X

Q
e−→ P ‖

X

Q′
(e ∈ Στ \X)

6 Yu and Chen and Wang

For any event in the synchronization event set X, both P and Q need to
synchronize on it. In addition, besides the events in X, the sub-processes also
need to synchronize on the terminal events.

P
e−→ P ′ ∧Q e−→ Q′

P ‖
X

Q
e−→ P ′ ‖

X

Q′
(e ∈ X)

P
ω1−−→ 0 ∧Q ω2−−→ 0

P ‖
X

Q
ω1‖ω2−−−−→ 0

(ω1, ω2 ∈ Ω)

Hiding. The hiding operator makes any event in the hiding event set X invisible.
Any event not in X, except τ , performed by the hidden process is still visible.

P
e−→ P ′

P \X τ−→ P ′ \X
(e ∈ X)

P
e−→ P ′

P \X e−→ P ′ \X
(e ∈ Γ τ \X)

Renaming. In a renaming process P JρK, ρ ⊆ Σ×Σ is a binary relation, each
element (e1, e2) of which means the outside of the renaming process will observe
e2 if the process P performs e1.

P
e1−→ P ′ ∧ (e1, e2) ∈ ρ
P JρK e2−→ P ′JρK

P
e−→ P ′ ∧ @e1 ∈ Σ • (e, e1) ∈ ρ

P JρK e−→ P ′JρK
(e ∈ Γ τ)

Recursion. A recursive process µ p.F (p) can replicate itself at each p in F (p).
In addition, if F (p) can evolve to a new process F (p)′ by performing an event,
then the recursive process µ p.F (p) can also perform the event. In the following,
F [a/b] means that the free variable b will be substituted by the expression a in
the function F .

µ p.F (p)
τ−→ F (p)[µ p.F (p)/p]

F (p)
e−→ F (p)′

µ p.F (p)
e−→ F (p)′[µ p.F (p)/p]

(e ∈ Γ τ)

3.3 Semantics of Compensable Processes

A compensable process also evolves by performing events. The special part is
that a compensable process can perform a terminal event ω ∈ Ω to evolve to a
standard process, i.e., PP

ω−→ P , and the standard process is used for compen-
sation. Because a compensable process is composed by compensation pairs, we
define the semantics of a compensation pair first.

Compensation pair. For a compensation pair P ÷Q, if the forward process P
can perform an event, then P ÷Q can perform the event. If the forward process
can terminate successfully, the compensation pair evolves to the compensation
process; otherwise, the compensation process is skip, which means that there is
no need to compensate the forward process.

P
e−→ P ′

P ÷Q e−→ P ′ ÷Q
(e ∈ Στ)

P
X−→ 0

P ÷Q X−→ Q

P
ω−→ 0

P ÷Q ω−→ skip
(ω ∈ {!, ?})

An Operational Semantics for Model Checking Long Running Transactions 7

For the basic processes skipp, throww and yieldd, their forward processes are
skip, throw and yield, respectively; their compensation processes are all skip.

We need to record and compose the compensation process when executing
the forward process of a compensable process. Therefore, we introduce nested
configuration to define the semantics of composite compensable processes. A
nested configuration is 〈C,P 〉, where C is a nested configuration or a compens-
able process PP , and P is a standard process. C is current forward behavior that
is not terminated, and P is the current compensation process. For the sake of
brevity, in the following of this paper, we use PP or QQ to denote both com-
pensable processes and nested configurations. In addition, same as the semantic
definitions of standard processes, we also use PP ′ or QQ′ to denote the process
or configuration after evolving.

Nested configuration. If the forward behavior can perform a non-terminal
event, then the nested configuration can also be transferred by performing the
event; otherwise, if the forward behavior can evolve to a standard process, the
nested configuration composes the resulting processes with the current compen-
sation process in a reversed order, which implements the backward recovery
mechanism in LRTs.

QQ
e−→ QQ′

〈QQ,P 〉 e−→ 〈QQ′, P 〉
(e ∈ Στ)

QQ
ω−→ Q

〈QQ,P 〉 ω−→ Q;P
(ω ∈ Ω)

It is necessary to point out that the evolving of a nested configuration will be
determined by its innermost nested configuration. For example, a÷ b a−→ skip÷ b
will make the nested configuration 〈〈a÷ b, c〉, d〉 evolve to 〈〈skip÷ b, c〉, d〉 after
performing the event a, by applying the above first rule twice.

Sequential composition. A sequential composition PP ;QQ will perform a
non-terminal event if PP can perform it; if the forward process of PP terminates
non-successfully, QQ will be disregarded and the whole process will evolve to the
compensation process of PP .

PP
e−→ PP ′

PP ;QQ
e−→ PP ′;QQ

(e ∈ Στ)
PP

ω−→ P

PP ;QQ
ω−→ P

(ω ∈ {!, ?})

If the forward process of PP terminates successfully, the compensation process
will be recorded by a newly created nested configuration. If the second process
can evolve to its compensation process, the compensation processes of PP and
QQ will be composed in the reversed order to satisfy the requirement of backward
recovery.

PP
X−→ P ∧QQ e−→ QQ′

PP ;QQ
e−→ 〈QQ′, P 〉

(e ∈ Στ)
PP

X−→ P ∧QQ ω−→ Q

PP ;QQ
ω−→ Q;P

(ω ∈ Ω)

Internal and external choices. For an internal choice between PP and QQ,
the selection is nondeterministic, and the definition is similar to that of the
internal choice of standard processes.

8 Yu and Chen and Wang

PP uQQ τ−→ PP PP uQQ τ−→ QQ

An external choice can perform any event that can be performed by any of
its sub-processes, and can evolve to the standard process that any of the sub-
processes can evolve to.

PP
e−→ PP ′

PP�QQ
e−→ PP ′

(e ∈ Στ)
QQ

e−→ QQ′

PP�QQ
e−→ QQ′

(e ∈ Στ)

PP
ω−→ P

PP�QQ
ω−→ P

(ω ∈ Ω)
QQ

ω−→ Q

PP�QQ
ω−→ Q

(ω ∈ Ω)

Parallel composition. Any sub-process of PP ‖
X

QQ can perform a non-terminal

event independently if the event is not in the synchronization set X.

PP
e−→ PP ′

PP ‖
X

QQ
e−→ PP ′ ‖

X

QQ
(e ∈ Στ\X)

QQ
e−→ QQ′

PP ‖
X

QQ
e−→ PP ‖

X

QQ′
(e ∈ Στ\X)

On the other hand, PP and QQ need to synchronize on any event in X and the
terminal events, and the synchronization affects both the forward behavior and
the compensation behavior.

PP
e−→ PP ′ ∧QQ e−→ QQ′

PP ‖
X

QQ
e−→ PP ′ ‖

X

QQ′
(e ∈ X)

PP
ω1−−→ P ∧QQ ω2−−→ Q

PP ‖
X

QQ
ω1‖ω2−−−−→ P ‖

X

Q
(ω1, ω2 ∈ Ω)

Hiding and renaming. Hiding and renaming operators affect both the forward
and compensation processes of a compensable process. For the forward processes,
the rules are as follows, which are similar to those of standard processes.

PP
e−→ PP ′

PP \X τ−→ PP ′ \X
(e ∈ X)

PP
e−→ PP ′

PP \X e−→ PP ′ \X
(e ∈ Στ \X)

PP
e1−→ PP ′ ∧ (e1, e2) ∈ ρ
PP JρK e2−→ PP ′JρK

PP
e−→ PP ′ ∧ @e1 ∈ Σ• ∈ (e, e1) ∈ ρ

PP JρK e−→ PP ′JρK
(e ∈ Στ)

If a compensable process can evolve to its compensation process, the events
performed by the compensation process also need to be hidden or renamed.

PP
ω−→ P

PP \X ω−→ P \X
(ω ∈ Ω)

PP
ω−→ P

PP JρK ω−→ P JρK
(ω ∈ Ω)

Speculative choice. PP �QQ is the speculative choice between two compens-
able processes, it behaves like that PP and QQ run in parallel until one of them
succeeds, then the other one will be compensated. Thus, we give the rules for
the parallelism in forward behavior first.

PP
e−→ PP ′

PP �QQ
e−→ PP ′ �QQ

(e ∈ Στ)
QQ

e−→ QQ′

PP �QQ
e−→ PP �QQ′

(e ∈ Στ)

An Operational Semantics for Model Checking Long Running Transactions 9

If one sub-process succeeds in the forward process, the other one will be com-
pensated by executing its compensation process.

PP
X−→ P ∧QQ ω−→ Q

PP �QQ
X−→ 〈Q÷ skip, P 〉

(ω ∈ Ω)
PP

ω−→ P ∧QQ X−→ Q

PP �QQ
X−→ 〈P ÷ skip, Q〉

(ω ∈ Ω)

However, when all the attempts fail, the speculative choice fails, and their com-
pensations will be accumulated in parallel.

PP
ω1−−→ P ∧QQ ω2−−→ Q

PP �QQ
ω1‖ω2−−−−→ P ‖ Q

(ω1, ω2 ∈ {!, ?})

Recursion. Like standard recursive processes, we also need to unfold recursive
compensable process. The evolving of FF (pp) can also make µ pp.FF (pp) evolve.
The different part is: when FF (pp) can evolve to the compensation standard
process, the recursive process can also evolve to the standard process.

µ pp.FF (pp)
τ−→ FF (pp)[µ pp.FF (pp)/pp]

FF (pp)
ω−→ P

µ pp.FF (pp)
ω−→ P

(ω ∈ Ω)

FF (pp)
e−→ FF (pp)′

µ pp.FF (pp)
e−→ FF (pp)′[µ pp.FF (pp)/pp]

(e ∈ Στ)

Transaction Block. Based on the semantics of compensable processes, we
can define the transaction block in standard processes. If the forward behavior
terminates successfully, the compensation will be disregarded, i.e., the LRT is
successful; otherwise, if the forward behavior terminates with an exception, the
compensation process will be executed.

PP
e−→ PP ′

[PP]
e−→ [PP ′]

(e ∈ Σ)
PP

X−→ P

[PP]
X−→ 0

PP
!−→ P ∧ P e−→ P ′

[PP]
e−→ P ′

(e ∈ Γ τ)

3.4 Correspondence with Failure-Divergence Semantics

The operational semantics defines a transition system for each process in the
extended cCSP. We present in [9] an FD semantics for the extended cCSP. Based
on the method in [20], we can derive the FD semantics of a standard process or
a compensable process from its operational semantics. First, we define the trace
transition. For a trace s in Σ~, P

s−→ P ′ means there exists s1 ∈ (Στ)~ such that
s1 \ τ = s, and the process P can perform each event of s1 in sequence to evolve
to P ′. In addition, P

ε−→ P is valid for any process P .

The FD semantics of a standard process P is (F(P),D(P)), where F(P) ⊆ Σ~×
P(Γ) is the failure set each element (s,X) of which means P refuses to perform
any event in X after executing the trace s, and D(P) is the divergence trace
set after executing each element of which P diverges. Based on the trace tran-
sition definition, for a standard process P , we can derive its FD semantics as

10 Yu and Chen and Wang

follows, where D(P) and F (P) are the derived divergence set and failure set of
P , respectively.

D(P) = {s·t | s ∈ Σ∗ ∧ t ∈ Σ~ ∧ ∃P ′ ∈ P • P s−→ P ′ ∧ div(P ′)}
F (P) = {(s,X) | ∃P ′ ∈ P • P s−→ P ′ ∧X ⊆ ref(P ′) ∧Ω ⊆ ref(P ′)}

∪ {(s,X) | ∃P ′ ∈ P • P s·ω−−→ P ′ ∧X ⊆ Γ \ {ω} ∧ s·ω ∈ ΣF}
∪ {(s,X) | ∃P ′ ∈ P • P s−→ P ′ ∧X ⊆ Γ ∧ s ∈ ΣF}
∪ {(s,X) | s ∈ D(P) ∧X ⊆ Γ}

where div(P ′) means there exists P0 = P ′, P1, P2, ..., such that Pi
τ−→ Pi+1 for each

i ∈ N, and ref(P) = {a | a ∈ Γ ∧ @P ′ ∈ P • P a−→ P ′} is the set of events P refuses
to perform. Following theorem ensures that the correspondence relation between
the operational semantics in this paper and the denotational semantics in [9]
holds for standard processes.

Theorem 1. For a standard process P , the derived model (F (P), D(P)) accord-
ing to the operational semantics is equal to the FD model (F(P),D(P)) of P .

Proof. The basic idea of proof is to induce the structures of standard processes.
First, we prove that the correspondence relation holds for atomic and basic
processes. For the atomic event process a, according to the above definition and
the operational semantics of a, D(a) is {}, and F (a) is as follows:

F (a) = {(ε,X) | X ⊆ Γ \ {a}} ∪ {(a,X) | X ⊆ Γ \ {X}} ∪ {(aX, X) | X ⊆ Γ}
According to the definition in [9], the divergence set of a is also {}, and F(a)

is equal to F (a). Thus, the correspondence relation holds for the atomic event
process a. The proofs for the basic processes including skip, throw, interp and
yield are similar.

For a composite process P ⊕Q, where P and Q are standard processes and
⊕ is a composition operator, we need to prove that the correspondence relation
holds for P ⊕Q with the assumption that the relation holds for both P and Q.
For the sake of space, we only show the proof for sequential composition, and
the other operators can be proved in a same manner.

For a sequential process P ; Q, we need to prove the following two equations:
D(P ; Q) = D(P ; Q) and F (P ; Q) = F(P ; Q). For the first equation D(P ; Q)

= D(P ; Q), if s ∈ D(P ; Q), according to the preceding derivation method, there
exists s1 and t1 such that s = s1·t1, where s1 ∈ Σ∗, t1 ∈ Σ~, ∃P ′ ∈ P • P ;Q

s1−→ P ′

and div(P ′). According to the operational semantics of P ; Q in Section 3.2, there
are following two cases for P ; Q

s1−→ P ′:

– P
s1−→ P ′ and s1 ∈ Σ∗, which means P diverges after executing s1. Therefore,

s1 ∈ D(P), which implies s1 ∈ D(P) by the assumption. According to the def-
inition in [9], i.e., D(P ; Q) = D(P) ∪ {s·t | sX ∈ traces(P) ∧ t ∈ D(Q)}, where
traces(P) is the set of traces that P can execute, s1 ∈ D(P ; Q) is valid.

– ∃s2X ∈ ΣF, s3 ∈ Σ∗ • P
s2X−−→ 0 ∧Q s3−→ P ′ ∧ s1 = s2·s3, which means P termi-

nates successfully without a divergence, and Q diverges after executing s3.

An Operational Semantics for Model Checking Long Running Transactions 11

Thus, same with the first case, we can have s3 ∈ D(Q). In addition, because
s2X ∈ traces(P) is valid, we can have s1 ∈ D(P ; Q) according to the definition
of D(P ; Q).

In total, we can have s1 ∈ D(P ; Q), which implies s ∈ D(P ; Q), because a di-
vergence set is suffix closed. Thus, we have proved D(P ; Q) ⊆ D(P ; Q). On the
other side, if s ∈ D(P ; Q), there are also two cases:

– s ∈ D(P), which implies s ∈ D(P). According to the derivation method, the
following result is valid: D(P) ⊆ D(P ; Q), so we can have s ∈ D(P ; Q).

– ∃s1X ∈ traces(P), s2 ∈ D(Q) • s = s1·s2. Thus, s2 ∈ D(Q), which means there
exist Q′, s3 and s4 such that Q

s3−→ Q′, Q′ diverges and s2 = s3·s4. According
to the operational semantics of P ; Q, we can have that P ; Q diverges after
executing s1·s3. Therefore, s ∈ D(P ; Q).

Hence, we can have s ∈ D(P ; Q) that implies D(P ; Q) ⊆ D(P ; Q). In the result
of the above proofs, D(P ; Q) = D(P ; Q) is proved. In a same way, we can prove
the equality between failure sets, i.e., F (P ; Q) = F(P ; Q). In total, we have
proved that the correspondence relation holds for sequential compositions. �

It is necessary to note that Theorem 1 does not consider the transaction
block processes, which need the derivation method for compensable processes
to prove the correspondence relation. The FD semantics of a compensable pro-
cess PP is defined to be (Ff (PP),Df (PP),Fc(PP),Dc(PP)), where Ff (PP) and
Df (PP) are the failure and divergence sets of the forward behavior of PP , Fc(PP)
and Dc(PP) are the compensation failure and compensation divergence sets of
PP . An element (s, s1, X) in Fc(PP) and an element (s, s1) in Dc(PP) records a
standard failure and a divergence of the compensation behavior for the forward
terminated trace s. Based on the derivation of standard processes, for a com-
pensable process PP , its failure divergence semantics can be derived as follows,
where Df (PP) and Ff (PP) are the derived forward divergence and failure sets,
Dc(PP) and Fc(PP) are the derived compensation divergence and failure sets.
Furthermore, the definitions of trace transition, div and ref are extended for
compensable processes and nested configurations.

Df (PP) = {s·t | s ∈ Σ∗ ∧ t ∈ Σ~ ∧ ∃PP ′ ∈ PP • PP s−→ PP ′ ∧ div(PP ′)}
Ff (PP) = {(s,X) | ∃PP ′∈PP • PP s−→ PP ′ ∧X ⊆ ref(PP ′) ∧Ω⊆ref(PP ′)}

∪ {(s,X) | ∃P ∈ P • PP s·ω−−→ P ∧X ⊆ Γ \ {ω} ∧ s·ω ∈ ΣF}
∪ {(s,X) | ∃P ∈ P • PP s−→ P ∧X ⊆ Γ ∧ s ∈ ΣF}
∪ {(s,X) | s ∈ Df (PP) ∧X ⊆ Γ}

Dc(PP) = {(s, t) | ∃P ∈ P • PP s−→ P ∧ t ∈ D(P)}
Fc(PP) = {(s, t,X) | ∃P ∈ P • PP s−→ P ∧ (t,X) ∈ F (P)}

where PP
s−→ P means there exists s1 ∈ (Στ)~ such that s1 \ τ = s, and the com-

pensable process PP can perform each event of s1 in sequence to evolve to its
compensation process P . Same as standard processes, PP

ε−→ PP is valid for any
compensable process.

12 Yu and Chen and Wang

Theorem 2. For a compensable process PP , the derived model (Ff (PP), Df (PP),

Fc(PP), Dc(PP)) according to the operational semantics is equal to the FD model
(Ff (PP),Df (PP),Fc(PP),Dc(PP)) of PP .

Proof. The way of proving the correspondence relation for compensable pro-
cesses is basically the same as that for standard processes. We first prove that
the relation holds for compensation pair. For a compensation pair P ÷Q, ac-
cording to the preceding derivation method and the operational semantics of
P ÷Q, Df (P ÷Q) is equal to D(P). In [9], the forward divergence set of P ÷Q
is defined to be D(P). Based on the assumption, i.e., D(P) = D(P), we can have
Df (P ÷Q) = Df (P ÷Q). Similarly, we can prove Ff (P ÷Q) = Ff (P ÷Q) based
on the fact that Ff (P ÷Q) is equal to F (P). For the compensation divergence
set, according to the operational semantics, there are two cases that a compensa-

tion pair can evolve to a standard process: P ÷Q sX−−→ Q, which means the forward
process P terminates successfully; P ÷Q sω−→ skip and ω ∈ Ω \ {X}, which mean P
terminates non-successfully. Thus, the derived compensation divergence set, i.e.,

Dc(P ÷Q), is {(sX, t) | P÷Q sX−−→Q∧t∈D(Q)} ∪ {(sω, t) | P÷Q sω−→skip∧t∈D(skip)},
the first part is equal to (tracet(P) ∩Σ∗{X})×D(Q), where tracet(P) is the termi-
nated traces that P can execute, and the second part is equal to the following set:
(tracet(P) ∩Σ∗{?,!})×D(skip). According to the definition of P ÷Q in [9], we can
conclude that Dc(P ÷Q) is equal to Dc(P ÷Q). The equality between Fc(P ÷Q)

and Fc(P ÷Q) can be proved in a same way. In total, the correspondence relation
holds for any compensation pair process.

Based on the proof for compensation pairs, we can induce on the structures
of composite compensable process or nested configurations to prove the validity
of the correspondence relation. The basic way is to discuss each case of the
operational semantics of each operator to prove that each element in the derived
model also belongs to the FD model; on the other hand, each case in the FD
semantic definition of each operator in [9] can also be discussed to prove that
each element in the FD model also belongs to the derived model. The way of
proving is basically the same as that for composite standard processes in the
proof of Theorem 1. The detailed proof is omitted due to the space limit. �

Based on Theorem 2, we can immediately get that the corresponding relation
holds for transaction block processes.

4 Model Checking and Implementation

With respect to the operational semantics, we can derive the transition system
of an LRT specified by the extended cCSP. Thus, we can use model checking
techniques to check whether some critical properties hold for the LRT. In the fol-
lowing of this section, we first study the model checking problem of the extended

An Operational Semantics for Model Checking Long Running Transactions 13

cCSP, then we present the implementation of an animator and a prototype model
checker for the extended cCSP.

4.1 Regular Property Model Checking of Extended cCSP

Given a standard process P and a finite state machine (FSM) R for a regular
property M , the model checking problem of P |= M is basically to check whether
L(T (P)) ⊆ L(R) holds, where L(TS) denotes the language accepted by the tran-
sition system TS, and T (P) is the transition system of P generated with respect
to the operational semantics in Section 3. We have proved that this problem is
undecidable in general in the following theorem.

Theorem 3. Given a standard process P of the extended cCSP and an FSM R,
the language inclusion problem L(T (P)) ⊆ L(R) is undecidable.

Proof. Our proof is inspired by the reduction method in [13][10]. The problem
is reduced to the halting problem of Minsky 2-counter machine that is known to
be undecidable [17]. The basic idea of the reduction is to construct a standard
process P and an FSM R for a 2-counter machine C. P models the behavior of C
with respect the memory constraint but without regard to the control constraint.
R models the control behavior of C but disregards the memory constraint of C,
and accepts all the non-halted traces of C. Therefore, L(T (P)) ⊆ L(R) iff C does
not halt can be proved. Thus, we can conclude the problem is undecidable in
general. The details of the prove is provided in the Appendix. �

4.2 Animator and Prototype Model Checker

We have implemented our operational semantics of the extended cCSP on Pro-
cess Analysis Toolkit (PAT) [21], which is a platform to develop the tools for
modeling, simulation and model checking of different types of systems. PAT sep-
arates a model checker into different parts, such as modeling, animating and
verification, and encapsulates each part as a module to be easily extended. The
different parts are connected by the transition system of the system that needs
modeling and verification. Users can quickly develop a prototype model checker
and an animator for their own language by implementing the syntax and the
operational semantics.

Based the operational semantics, we have built an animator and a proto-
type model checker on PAT for the extended cCSP. Our tool can verify the
critical properties of the models in the extended cCSP, including deadlock-free,
reachability, linear temporal logic (LTL) properties, etc. In addition, the tool
also supports refinement checking for standard processes, in which a transac-
tion block process specifies an LRT. Although the model checking problem is

14 Yu and Chen and Wang

proved to be undecidable in general, our model checker works well for finite
models. Besides, users can use the animator to play complex models speci-
fied in the extended cCSP. To the best of our knowledge, our tool is the first
one that supports both LTL model checking and refinement checking for LRT
models. The prototype tool and some case study examples are available at
http://rcos.iist.unu.edu/~zbchen/LRT.html.

5 Case Study

We use the case study of an online travel agency to demonstrate the tool. Usu-
ally, for a travel agency providing Web Services for booking air tickets, reserving
hotel rooms and renting cars, it will use the services provided by its business
partners, such as Airlines, Hotels, Car Rental Centers and Banks. The main
business process is as follows. After receiving a request, the Agency carries out
the air ticket booking, hotel reservation, car rental process and payment in par-
allel. Usually, the Agency has to repeatedly request the car rental service at the
destination, until getting a car. If all the steps succeed, the Agency replies to
the client with the booking information and waits for the confirmation. Then,
after being confirmed, the Agency sends all the details of the booking and pay-
ment to the client. If one exception occurs in any of the above steps, such as the
client cancels the request, the whole process fails and needs to be recovered by
compensating the successful steps before, e.g., canceling the air ticket, and the
Agency sends an apology letter to the client.

5.1 Specification

The whole process involves five parties, each of which is specified by a com-
pensable process. The processes Agency, Air, Car, Hotel and Bank are as
follows.

Travel Agency. After receiving a request, the Travel Agency will reserve the
hotel room, book the flight ticket, arrange a car and do the payment for the
client (ResPay). Then, if the client agrees to what the Agency reserves (Cfm),
the Agency will complete the process by sending the final result to the client.

Agency = (reqTravel÷ letter) ; ResPay ; Cfm ; result÷ skip

ResPay = (reqHotel;(okRoom�(noRoom;throw)))÷cancelHotel‖
(bookAir;(okAir�(noAir;throw)))÷cancelAir‖
µ pp.(reqCar÷skip;(((noCar÷skip);pp)�(hasCar÷cancelCar)))‖
((checkCredit ; (valid � (inValid;throw)))÷ skip;

(payment÷ refund);(pValid � (pInValid;throw))÷ skip);
Cfm = (sendConfirm ; (agree � (disAgree;throw)))÷ skip

The remaining parties. The hotel service responds each request with whether
there is a room. The airline company receives requests and then responses

An Operational Semantics for Model Checking Long Running Transactions 15

whether there are rest tickets. The car rental service is usually requested multi-
ple times to rent a car. The bank service first checks the credit card, and then
finalizes the payment.

Hotel = reqHotel÷skip;(okRoom÷cancelHotelu(noRoom÷skip;throww))
Air = bookAir÷skip;(okAir÷cancelAiru(noAir÷skip;throww))
Car = µ pp.(reqCar÷ skip;((noCar÷skip);pp)u(hasCar÷cancelCar)))
Bank = (checkCredit;(valid u (inValid;throw)))÷ skip ;

(payment÷refund);(pValidu(pInValid;throw))÷skip

The global business process (GBP) is the transaction block of the synchro-
nized parallel composition of the above five processes.

GBP = [((((Agency ‖
X1

Hotel) ‖
X2

Air) ‖
X3

Car) ‖
X4

Bank)],

X1 = {reqHotel, okRoom, noRoom, cancelHotel}
X2 = {bookAir, okAir, noAir, cancelAir}
X3 = {reqCar, noCar, hasCar, cancelCar}
X4 = {checkCredit,valid,inValid,payment,refund,pValid,pInValid}

5.2 Verification Results

Using our tool, we have verified the process GBP with respect to different types
of properties. Table 1 lists the verification results. All the experiments were
conducted on a laptop with 2G memory and one 2.67GHz Intel i5 CPU, and the
timeout threshold for verification is set to be two minutes.

Table 1: Verification results of the case study

Property Result Time Memory (MB)

1 GBP |= �(! hasCar U okAir) False 18.43(ms) 28.33

2 GBP |= �(! noCar U sendConfirm) False 14.38(ms) 28.33

3 GBP |= (! letter U cancelCar)∨ True 34.06(s) 118.13
(� ! letter)

4 GBP |= cancelAir R ! letter False 6.66(ms) 8.84

5 GBP |= agree R ! result True 32.78(s) 12.71

6 GBP reaches hasCar True 29.14(ms) 8.87

7 [PCar] refines〈FD〉 [Car] True 18.24(ms) 23.59

8 GBP deadlockfree True 15.36(s) 12.86

9 GBP divergencefree True 66.41(s) 9.85

10 [Car \ {reqCar, noCar}] divergencefree False 9.16(ms) 8.58

In Table 1, all of the ten properties can be successfully verified. The first
five properties are more business related, and they are explained as follows: 1)
the first property is an LTL property, which means getting the airline ticket will

16 Yu and Chen and Wang

happen, and the successful car renting cannot happen before getting the airline
ticket, but this property is not valid, because car renting and airline ticket book-
ing are carried out in parallel or airline ticket booking may fail; 2) the second
property means asking the client for confirmation will happen and no available
car cannot happen before asking the client to confirm the booking, which is not
valid either, because it may need to request the car service multiple times to
get a car or the process before the confirmation may fail; 3) the third prop-
erty is about compensation behaviour, which means that sending apology letter
cannot happen before cancelling the car in case that the global process fails,
and the validity of the property implies that the business process satisfies the
backward recovery requirement; 4) the fourth property is also about compensa-
tion behaviour, which requires sending letter cannot happen before cancelling
the airline ticket, but the property is not valid, because the failure of the global
process may be caused by the unavailability of the airline tickets; 5) the fifth
property is also an LTL property, which means the final booking result delivery
cannot happen before the client agreement, and the property is satisfied by the
global process.

The rest properties are more related to reachability, refinement or concurrent
features. The sixth property is a reachability property, which means the hasCar

event is reachable by the global process GBP. The seventh property is an FD
refinement property, and PCar = reqCar÷ skip; hasCar÷ cancelCar, which is the
model for a perfect car rental service, and [PCar] refines [Car] with respect to the
FD refinement in [9]. The eighth property means the global process is deadlock
free, which is also valid and can be verified successfully. The divergence free of
the global process is specified by the ninth property, and the property is verified
successfully to be true. The last property is also a divergence-free property, which
means the transaction block of the Car process by hiding the reqCar and noCar

is divergence-free, but the process can diverge at the beginning.

6 Related Work

Formal modeling and verification of LRTs attracts much attention recently.
There are many formalisms proposed for LRT modeling. Most of the formalisms
are extensions to process algebra. These existing work differs in the expressive-
ness and the supported policies of LRTs. Many of them have an operational se-
mantics, including StAC [4], the original cCSP [6], SAGAs calculi [3], π-calculus
extended formalisms [2][14], etc. StAC is provided with a small-step operational
semantics in [4], which supports a more flexible indexed compensation mech-
anism, but without considering the verification problem. SAGAs calculi in [3]
have a big-step operational semantics, and support more flexible interruption
and compensation policies in modeling LRTs, but do not support deadlock or
livelock modeling. Most of these work lacks of tool support for modeling and
verification, which brings difficulties to the application of the theories. In [23],

An Operational Semantics for Model Checking Long Running Transactions 17

an asynchronous polyadic π-calculus dcπ++ is proposed, and the operational
semantics is implemented in Prolog and connected with the ProB model checker
for LTL model checking, but no animating or refinement checking is supported
by their tool.

For the operational semantics in [6] for the original cCSP, we find the small-
step operational semantics in [6] is not complete, especially for compensable
processes. Actually, more transition rules of the construct 〈QQ,P 〉 used in the
semantic interpretation of compensable processes are needed. For example, for
the compensable process a1 ÷ b1; (skip÷ b2; a3 ÷ b3), with respect to the opera-
tional semantics in [6], it evolves to skip÷ b1; (skip÷ b2; a3 ÷ b3) after perform-
ing a1. However, the resulting process cannot evolve anymore. The reason is
skip÷ b2; a3 ÷ b3 can evolve to 〈skip÷ b3, b2〉 after performing a3, but there is no
rule in [6] for sequential composition taking into account this situation, i.e., the
second subprocess evolving from a compensable process to a construct. In this
paper, we solve this problem by using nested configurations and taking into ac-
count nested configurations in the transition rules (c.f. Section 3.3). In addition,
our operational semantics supports the verification of more properties, such as
deadlock-free and divergence-free.

7 Conclusion and Future Work

LRTs are widely used in SOC to improve the consistency in service coordina-
tions. This paper presents an operational semantics for modeling and verifying
the LRTs specified in the extended cCSP. The semantics provides a theoreti-
cal foundation for implementing and model checking the extended cCSP. Fur-
thermore, the derivation of the FD semantics from the operational semantics
is provided, which serves as the basis for justifying the correctness of the FD
semantics. Based on the operational semantics, we have implemented an anima-
tor and a prototype model checker, which supports verifying different kinds of
properties, such as deadlock-free, LTL properties and refinement. In addition,
we have investigated the model checking problem of the extended cCSP with
respect to regular properties, and proved the problem to be undecidable.

The future work lies in several aspects. For some case studies, especially
for the models within which many parallel compositions exist, using our tool
will generate a huge state space when carrying out some analysis tasks, such as
deadlock free analysis. Therefore, we will try to use the algebraic laws in [9] to
improve the efficiency of the verification. Because the model checking problem
with respect to regular properties is undecidable, more efficient model check-
ing algorithms especially for the extended cCSP are needed, and tree-automata
based model checking [16] may be a direction. In addition, more applications for
using the extended cCSP and the tool are appreciated.

18 Yu and Chen and Wang

Acknowledgments. This research is supported in part by grants from the
National NSFC projects (Nos. 61103013 and 61120106006), the National 973
project 2014CB340703, and the Specialized Research Fund for the Doctoral Pro-
gram of Higher Education 20114307120015. The authors would like to thank the
anonymous reviewers for their suggestions that help to improve the paper. Fur-
thermore, we would like to appreciate the help from Yang Liu and Manchun
Zheng in PAT group during our tool development.

References

1. A. Alves, A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kartha, Ster-
ling, D. König, V. Mehta, S. Thatte, D. van der Rijn, P. Yendluri, and A. Yiu.
Web services business process execution language version 2.0. OASIS Committee
Draft, May 2006.

2. L. Bocchi, C. Laneve, and G. Zavattaro. A calculus for long-running transactions.
In Proc. FMOODS 2003, LNCS 2884, pages 124–138. Springer, 2003.

3. R. Bruni, H. C. Melgratti, and U. Montanari. Theoretical foundations for compen-
sations in flow composition languages. In Proc. POPL 2005, pages 209–220. ACM
Press, 2005.

4. M. J. Butler and C. Ferreira. An operational semantics for StAC, a language for
modelling long-running business transactions. In Proc. COORDINATION 2004,
LNCS 2949, pages 87–104. Springer, 2004.

5. M. J. Butler, C. A. R. Hoare, and C. Ferreira. A trace semantics for long-running
transactions. In 25 Years Communicating Sequential Processes, LNCS 3525, pages
133–150. Springer, 2004.

6. M. J. Butler and S. Ripon. Executable semantics for compensating CSP. In Proc.
WS-FM 2005, LNCS 3670, pages 243–256. Springer, 2005.

7. Z. Chen and Z. Liu. An extended cCSP with stable failures semantics. In Proc.
ICTAC, LNCS 6255, pages 121–136. Springer, 2010.

8. Z. Chen, Z. Liu, and J. Wang. Failure-divergence refinement of compensating
communicating processes. In Proc. FM 2011, LNCS 6664, pages 262–277, 2011.

9. Z. Chen, Z. Liu, and J. Wang. Failure-divergence semantics and refinement of long
running transactions. Theor. Comput. Sci., 455:31–65, 2012.

10. M. Emmi and R. Majumdar. Verifying compensating transactions. In Proc. VM-
CAI 2007, LNCS 4349, pages 29–43, 2007.

11. H. Garcia-Molina and K. Salem. SAGAS. In Proc. SIGMOD 1987, pages 249–259.
ACM Press, 1987.

12. J. Gray and A. Reuter. Transaction processing: concepts and techniques. Morgan
Kaufmann, 1993.

13. A. Kucera and R. Mayr. Simulation preorder over simple process algebras. Inf.
Comput., 173(2):184–198, 2002.

14. C. Laneve and G. Zavattaro. Foundations of web transactions. In Proc. FoSSaCS
2005, LNCS 3441, pages 282–298, 2005.

15. M. C. Little. Transactions and web services. Commun. ACM, 46(10):49–54, 2003.
16. D. Lugiez and P. Schnoebelen. The regular viewpoint on pa-processes. Theor.

Comput. Sci., 274(1-2):89–115, 2002.
17. M. L. Minsky. Computation: Finite and infinite machines. Prentice-Hall, Engle-

wood Cliffs, New Jersey, 1967.

An Operational Semantics for Model Checking Long Running Transactions 19

18. M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-oriented
computing: State of the art and research challenges. IEEE Computer, 40(11):38–
45, 2007.

19. G. Ramalingam and K. Vaswani. Fault tolerance via idempotence. In Proc. POPL
2013, pages 249–262. ACM Press, 2013.

20. A. W. Roscoe. The theory and practice of concurrency. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1997.

21. J. Sun, Y. Liu, J. S. Dong, and J. Pang. PAT: Towards flexible verification under
fairness. In Proc. CAV 2009, LNCS 5643, pages 709–714, 2009.

22. S. Thatte. XLANG web services for business process design, 2001.
23. C. Vaz and C. Ferreira. On the analysis of compensation correctness. J. Log.

Algebr. Program., 81(5):585–605, 2012.

Appendix

Proof of Theorem 3

Theorem 3. Given a standard process P of the extended cCSP and an FSM
R, the language inclusion problem L(T (P)) ⊆ L(R) is undecidable.

Proof. The problem can be reduced to the halting problem of Minsky 2-counter
machine that is known to be undecidable [17]. The basic idea of the reduction
is to construct a standard process P and an FSM R for a 2-counter machine M .
P models the behavior of M with respect the memory constraint but without
regard to the control constraint of M . R models the control behavior of M but
disregards the memory constraint, and accepts all the traces of M that are not
halted. Therefore, L(T (P)) ⊆ L(R) iff M does not halt, which implies the problem
is undecidable in general.

Hence, we need to give how to construct the process and the FSM. Let M be
a 2-counter machine with n numbered instructions:

〈1 : ins1〉 〈2 : ins2〉 〈n− 1 : insn−1〉 〈n : halt〉

where insi∈{(ck:=ck + 1; goto j), (if (ck = 0) goto j; (ck:=ck − 1; goto l))}, k∈{1, 2},
1 ≤ j, l ≤ n and 1 ≤ i ≤ n− 1.

The construction of the extended cCSP process P is as follows, where k ∈ {1, 2}.

Mk = (inck ÷ [Mk] ; Mk)�((deck; throw)÷ skip)
Ck = [Mk]
Zk = [(zerok ÷ skip ; Zk ÷ skip)�(inck ÷ Zk ; (Ck ÷ skip ; throww))]
P = (Cm1

1 ; Z1) ‖ (Cm2
2 ; Z2)

In the above construction, inck, deck and zerok represent the events of increasing,
decreasing and zeroing the k-th counter, respectively. C1 and C2 are the processes

20 Yu and Chen and Wang

that try to increase or decrease the first counter and the second counter, respec-
tively. After executing each terminated trace of Ck, the corresponding counter
is decreased by one. During the execution of Ck, the memory constraint of the
corresponding counter is preserved, i.e., the counter is no less than 1 if it is set
to 2 at the beginning of executing Ck. Zk is the process that tries to keep the
content of the kth counter to be zero. Thus, the evolving of the processes Ck and
Zk is consistent with the memory constraint of M . The process P models the
2-counter machine that the initial values of first counter and second counter are
m1 and m2, respectively, where Cmk

k is the sequential composition of mk copies
of Ck.

According to the instructions of M , we can construct the FSM R=(Σ,S, s0, δ, F),
where Σ is the alphabet set and Σ = {inck, deck, zerok | k ∈ {1, 2}}, S is the state
set and S = {si | 1 ≤ i ≤ n} ∪ {sn+1}, s0 is the initial state, i.e., s1 in S, δ : S×Σ→S
is the transition function, F is the final state set and F = S \ {sn}. For each con-
struction, we can add the transitions as follows, where k ∈ {1, 2}.

〈i : ck := ck + 1; goto j〉 =⇒ δ(si, inck) = sj
〈i : if ck = 0 goto j; ck := ck − 1; goto l〉 =⇒ δ(si, zerok) = sj , δ(si, deck) = sl

Then, we complete R by adding a self-transition to sn+1 for each element in Σ,
i.e., ∀a ∈ Σ • δ(sn+1, a) = sn+1. Finally, for each state s except sn, if there does
not exist a transition for an element a in Σ (@s1 ∈ S • δ(s, a) = s1), we add a
transition from s to sn+1 with the label as a to δ, i.e., δ(s, a) = sn+1. Thus, the
FSM R is constructed according to the control constraints of M , and R accepts
the trace any prefix of which is not a halted trace of M , because there is no
transition from sn to sn+1, and sn is not a final state.

According to the above constructions, we next prove “L(T (P)) ⊆ L(R) iff M

does not halt”. Instead of proving it directly, we prove “L(T (P)) * L(R) iff M

halts”.

– If M halts, then there exists a trace s produced by a halted execution of
M , which is accepted by T (P), because P satisfies the memory constraints.
However, according to the construction of R, s is not accepted by R. Thus,
L(T (P)) * L(R).

– If L(T (P)) * L(R), then there exists a trace s accepted by T (P), but s is not
accepted by R. According to the construction of R, there must exist st that
is a prefix of s and st can reach the state sn in the state set S of R, i.e.,
M can reach the last instruction (halt) via st. Also, because s is accepted
by T (P), the execution of st satisfies the memory constraint. Thus, M has a
halting execution, i.e., M halts.

In total, we can have L(T (P)) ⊆ L(R) iff M does not halt. Therefore, according
to the undecidable result of 2-counter machine [17], the problem L(T (P)) ⊆ L(R)

is undecidable in general. �

