
An Operational Semantics for Model
Checking Long Running Transactions

Hengbiao Yu, Zhenbang Chen, Ji Wang
zbchen@nudt.edu.cn

School of Computer, National University of Defense Technology,
Changsha, China

National Laboratory for Parallel and Distributed Processing,
Changsha, China

mailto:zbchen@nudt.edu.cn
mailto:zbchen@nudt.edu.cn

Long Running Transactions

• Database

• Long-lived transactions

• ACID transactions

• SAGAS

• 1987, SIGMOD

• Compensation

Compensation

Compensation-based LRTs

• An activity has its compensation activity

• Use compensations in case of failures

• A relaxed atomicity and consistency

a1

b1

a2

b2

a3

b3

Failure

Service-Oriented Computing

• Services are world wide distributed

• Coordinate to accomplish a task

• Highly dynamic, not stable

How to ensure consistency
in case of a failure?

Long running transactions

Compensation-based Programming
in SOC

• Industrial service orchestration languages

• Compensation based fault handling

• Very flexible recovery mechanisms

WS-BPEL 2.0, OASIS Standard, 11 April 2007

Fault Handler

Compensation
Handler

Compensation-based Programming
in SOC

• Industrial service orchestration languages

• Compensation based fault handling

• Very flexible recovery mechanisms

• Formal Languages

• cCSP, StAC, SAGAs Calculi, etc.

• Theoretical foundations

Compensating CSP

• A CSP variant for modeling LRTs

• Proposed by Butler et al., 2005

• Two types of processes

• Standard & Compensable

• Composition operators

• Choice, sequence, interleaving, etc.

Extended cCSP
P ::= a | P ;P | P u P | P⇤P | P k

X
P | P \X | P JRK | P B P | [PP] |

skip | throw | yield | µ p.F (p)

PP ::= P÷P | PP ;PP | PP u PP | PP⇤PP | PP k
X

PP | PP ⇥ PP |

PP \X | PP JRK | skipp | throww | yieldd | µ pp.FF (pp)

• Enabling the modeling of non-determinism, deadlock
and livelock

• Stable-failures semantics
Zhenbang Chen and Zhiming Liu. An Extended cCSP with Stable Failures
Semantics. 7th International Colloquium on Theoretical Aspects of
Computing (ICTAC’10), LNCS 6255, 2010.

Extended cCSP
P ::= a | P ;P | P u P | P⇤P | P k

X
P | P \X | P JRK | P B P | [PP] |

skip | throw | yield | µ p.F (p)

PP ::= P÷P | PP ;PP | PP u PP | PP⇤PP | PP k
X

PP | PP ⇥ PP |

PP \X | PP JRK | skipp | throww | yieldd | µ pp.FF (pp)

• Failure-divergence semantics, refinement

Zhenbang Chen, Zhiming Liu and Ji Wang. Failure-Divergence Refinement of
Compensating Communicating Processes. 17th International Symposium on Formal
Methods (FM’11), LNCS 6664, 2011.

Zhenbang Chen, Zhiming Liu and Ji Wang. Failure-Divergence Semantics and
Refinement of Long Running Transactions. Theoretical Computer Science (TCS),
Vol 455, pp:31-65, 2012

Current Issue

• No operational semantics for extended cCSP

• There is one for cCSP

• No tool support for modeling and verification

• Animating

• Model checking

• ...

What we have done in this paper

• An operational semantics for the extended
cCSP

• Model checking problem w.r.t. regular
properties

• A prototype tool built on PAT

• Modeling, animating and model checking

Operational Semantics
P ::= a | P ;P | P u P | P⇤P | P k

X
P | P \X | P JRK | P B P | [PP] |

skip | throw | yield | µ p.F (p)

PP ::= P÷P | PP ;PP | PP u PP | PP⇤PP | PP k
X

PP | PP ⇥ PP |

PP \X | PP JRK | skipp | throww | yieldd | µ pp.FF (pp)

Compensation Pair

6 Yu and Chen and Wang

For any event in the synchronization event set X, both P and Q need to
synchronize on it. In addition, besides the events in X, the sub-processes also
need to synchronize on the terminal events.

P

e�! P

0 ^Q

e�! Q

0

P k
X

Q

e�! P

0 k
X

Q

0
(e 2 X)

P

!1��! 0 ^Q

!2��! 0

P k
X

Q

!1k!2����! 0
(!1,!2 2 ⌦)

Hiding. The hiding operator makes any event in the hiding event set X invisible.
Any event not in X, except ⌧ , performed by the hidden process is still visible.

P

e�! P

0

P \X ⌧�! P

0 \X
(e 2 X)

P

e�! P

0

P \X e�! P

0 \X
(e 2 �

⌧ \X)

Renaming. In a renaming process P J⇢K, ⇢ ✓ ⌃⇥⌃ is a binary relation, each
element (e1, e2) of which means the outside of the renaming process will observe
e2 if the process P performs e1.

P

e1�! P

0 ^ (e1, e2) 2 ⇢

P J⇢K e2�! P

0J⇢K
P

e�! P

0 ^ @e1 2 ⌃ • (e, e1) 2 ⇢

P J⇢K e�! P

0J⇢K
(e 2 �

⌧)

Recursion. A recursive process µ p.F (p) can replicate itself at each p in F (p).
In addition, if F (p) can evolve to a new process F (p)0 by performing an event,
then the recursive process µ p.F (p) can also perform the event. In the following,
F [a/b] means that the free variable b will be substituted by the expression a in
the function F .

µ p.F (p)
⌧�! F (p)[µ p.F (p)/p]

F (p)
e�! F (p)0

µ p.F (p)
e�! F (p)0[µ p.F (p)/p]

(e 2 �

⌧)

3.3 Semantics of Compensable Processes

A compensable process also evolves by performing events. The special part is
that a compensable process can perform a terminal event ! 2 ⌦ to evolve to a
standard process, i.e., PP

!�! P , and the standard process is used for compen-
sation. Because a compensable process is composed by compensation pairs, we
define the semantics of a compensation pair first.

Compensation pair. For a compensation pair P ÷Q, if the forward process P

can perform an event, then P ÷Q can perform the event. If the forward process
can terminate successfully, the compensation pair evolves to the compensation
process; otherwise, the compensation process is skip, which means that there is
no need to compensate the forward process.

P

e�! P

0

P ÷Q

e�! P

0 ÷Q

(e 2 ⌃

⌧)
P

X�! 0

P ÷Q

X�! Q

P

!�! 0

P ÷Q

!�! skip

(! 2 {!, ?})

a1÷b1
a1 skip÷b1

√
b1

Example

Operational Semantics
P ::= a | P ;P | P u P | P⇤P | P k

X
P | P \X | P JRK | P B P | [PP] |

skip | throw | yield | µ p.F (p)

PP ::= P÷P | PP ;PP | PP u PP | PP⇤PP | PP k
X

PP | PP ⇥ PP |

PP \X | PP JRK | skipp | throww | yieldd | µ pp.FF (pp)

Sequential Composition

An Operational Semantics for Model Checking Long Running Transactions 7

For the basic processes skipp, throww and yieldd, their forward processes are
skip, throw and yield, respectively; their compensation processes are all skip.

We need to record and compose the compensation process when executing
the forward process of a compensable process. Therefore, we introduce nested

configuration to define the semantics of composite compensable processes. A
nested configuration is hC,P i, where C is a nested configuration or a compens-
able process PP , and P is a standard process. C is current forward behavior that
is not terminated, and P is the current compensation process. For the sake of
brevity, in the following of this paper, we use PP or QQ to denote both com-
pensable processes and nested configurations. In addition, same as the semantic
definitions of standard processes, we also use PP

0 or QQ

0 to denote the process
or configuration after evolving.

Nested configuration. If the forward behavior can perform a non-terminal
event, then the nested configuration can also be transferred by performing the
event; otherwise, if the forward behavior can evolve to a standard process, the
nested configuration composes the resulting processes with the current compen-
sation process in a reversed order, which implements the backward recovery
mechanism in LRTs.

QQ

e�! QQ

0

hQQ,P i e�! hQQ

0
, P i

(e 2 ⌃

⌧)
QQ

!�! Q

hQQ,P i !�! Q;P
(! 2 ⌦)

It is necessary to point out that the evolving of a nested configuration will be
determined by its innermost nested configuration. For example, a÷ b

a�! skip÷ b

will make the nested configuration hha÷ b, ci, di evolve to hhskip÷ b, ci, di after
performing the event a, by applying the above first rule twice.

Sequential composition. A sequential composition PP ;QQ will perform a
non-terminal event if PP can perform it; if the forward process of PP terminates
non-successfully, QQ will be disregarded and the whole process will evolve to the
compensation process of PP .

PP

e�! PP

0

PP ;QQ

e�! PP

0;QQ

(e 2 ⌃

⌧)
PP

!�! P

PP ;QQ

!�! P

(! 2 {!, ?})

If the forward process of PP terminates successfully, the compensation process
will be recorded by a newly created nested configuration. If the second process
can evolve to its compensation process, the compensation processes of PP and
QQ will be composed in the reversed order to satisfy the requirement of backward
recovery.

PP

X�! P ^QQ

e�! QQ

0

PP ;QQ

e�! hQQ

0
, P i

(e 2 ⌃

⌧)
PP

X�! P ^QQ

!�! Q

PP ;QQ

!�! Q;P
(! 2 ⌦)

Internal and external choices. For an internal choice between PP and QQ,
the selection is nondeterministic, and the definition is similar to that of the
internal choice of standard processes.

An Operational Semantics for Model Checking Long Running Transactions 7

For the basic processes skipp, throww and yieldd, their forward processes are
skip, throw and yield, respectively; their compensation processes are all skip.

We need to record and compose the compensation process when executing
the forward process of a compensable process. Therefore, we introduce nested

configuration to define the semantics of composite compensable processes. A
nested configuration is hC,P i, where C is a nested configuration or a compens-
able process PP , and P is a standard process. C is current forward behavior that
is not terminated, and P is the current compensation process. For the sake of
brevity, in the following of this paper, we use PP or QQ to denote both com-
pensable processes and nested configurations. In addition, same as the semantic
definitions of standard processes, we also use PP

0 or QQ

0 to denote the process
or configuration after evolving.

Nested configuration. If the forward behavior can perform a non-terminal
event, then the nested configuration can also be transferred by performing the
event; otherwise, if the forward behavior can evolve to a standard process, the
nested configuration composes the resulting processes with the current compen-
sation process in a reversed order, which implements the backward recovery
mechanism in LRTs.

QQ

e�! QQ

0

hQQ,P i e�! hQQ

0
, P i

(e 2 ⌃

⌧)
QQ

!�! Q

hQQ,P i !�! Q;P
(! 2 ⌦)

It is necessary to point out that the evolving of a nested configuration will be
determined by its innermost nested configuration. For example, a÷ b

a�! skip÷ b

will make the nested configuration hha÷ b, ci, di evolve to hhskip÷ b, ci, di after
performing the event a, by applying the above first rule twice.

Sequential composition. A sequential composition PP ;QQ will perform a
non-terminal event if PP can perform it; if the forward process of PP terminates
non-successfully, QQ will be disregarded and the whole process will evolve to the
compensation process of PP .

PP

e�! PP

0

PP ;QQ

e�! PP

0;QQ

(e 2 ⌃

⌧)
PP

!�! P

PP ;QQ

!�! P

(! 2 {!, ?})

If the forward process of PP terminates successfully, the compensation process
will be recorded by a newly created nested configuration. If the second process
can evolve to its compensation process, the compensation processes of PP and
QQ will be composed in the reversed order to satisfy the requirement of backward
recovery.

PP

X�! P ^QQ

e�! QQ

0

PP ;QQ

e�! hQQ

0
, P i

(e 2 ⌃

⌧)
PP

X�! P ^QQ

!�! Q

PP ;QQ

!�! Q;P
(! 2 ⌦)

Internal and external choices. For an internal choice between PP and QQ,
the selection is nondeterministic, and the definition is similar to that of the
internal choice of standard processes.

a1÷b1 ; a2÷b2

skip÷b1 ; a2÷b2

⟨skip÷b2 , b1⟩

a1

a2

Example

Operational Semantics
P ::= a | P ;P | P u P | P⇤P | P k

X
P | P \X | P JRK | P B P | [PP] |

skip | throw | yield | µ p.F (p)

PP ::= P÷P | PP ;PP | PP u PP | PP⇤PP | PP k
X

PP | PP ⇥ PP |

PP \X | PP JRK | skipp | throww | yieldd | µ pp.FF (pp)

Nested Configuration

An Operational Semantics for Model Checking Long Running Transactions 7

For the basic processes skipp, throww and yieldd, their forward processes are
skip, throw and yield, respectively; their compensation processes are all skip.

We need to record and compose the compensation process when executing
the forward process of a compensable process. Therefore, we introduce nested

configuration to define the semantics of composite compensable processes. A
nested configuration is hC,P i, where C is a nested configuration or a compens-
able process PP , and P is a standard process. C is current forward behavior that
is not terminated, and P is the current compensation process. For the sake of
brevity, in the following of this paper, we use PP or QQ to denote both com-
pensable processes and nested configurations. In addition, same as the semantic
definitions of standard processes, we also use PP

0 or QQ

0 to denote the process
or configuration after evolving.

Nested configuration. If the forward behavior can perform a non-terminal
event, then the nested configuration can also be transferred by performing the
event; otherwise, if the forward behavior can evolve to a standard process, the
nested configuration composes the resulting processes with the current compen-
sation process in a reversed order, which implements the backward recovery
mechanism in LRTs.

QQ

e�! QQ

0

hQQ,P i e�! hQQ

0
, P i

(e 2 ⌃

⌧)
QQ

!�! Q

hQQ,P i !�! Q;P
(! 2 ⌦)

It is necessary to point out that the evolving of a nested configuration will be
determined by its innermost nested configuration. For example, a÷ b

a�! skip÷ b

will make the nested configuration hha÷ b, ci, di evolve to hhskip÷ b, ci, di after
performing the event a, by applying the above first rule twice.

Sequential composition. A sequential composition PP ;QQ will perform a
non-terminal event if PP can perform it; if the forward process of PP terminates
non-successfully, QQ will be disregarded and the whole process will evolve to the
compensation process of PP .

PP

e�! PP

0

PP ;QQ

e�! PP

0;QQ

(e 2 ⌃

⌧)
PP

!�! P

PP ;QQ

!�! P

(! 2 {!, ?})

If the forward process of PP terminates successfully, the compensation process
will be recorded by a newly created nested configuration. If the second process
can evolve to its compensation process, the compensation processes of PP and
QQ will be composed in the reversed order to satisfy the requirement of backward
recovery.

PP

X�! P ^QQ

e�! QQ

0

PP ;QQ

e�! hQQ

0
, P i

(e 2 ⌃

⌧)
PP

X�! P ^QQ

!�! Q

PP ;QQ

!�! Q;P
(! 2 ⌦)

Internal and external choices. For an internal choice between PP and QQ,
the selection is nondeterministic, and the definition is similar to that of the
internal choice of standard processes.

a1÷b1 ; a2÷b2 skip÷b1 ; a2÷b2 ⟨skip÷b2 , b1⟩
a1 a2 b2 ; b1

√
Example

Operational Semantics
P ::= a | P ;P | P u P | P⇤P | P k

X
P | P \X | P JRK | P B P | [PP] |

skip | throw | yield | µ p.F (p)

PP ::= P÷P | PP ;PP | PP u PP | PP⇤PP | PP k
X

PP | PP ⇥ PP |

PP \X | PP JRK | skipp | throww | yieldd | µ pp.FF (pp)

Configuration Discussion

a1÷b1 ; (skip÷b2 ; a3÷b3)

skip÷b2 ; a3÷b3 ⟨skip÷b3 , b2⟩

a1

a3

skip÷b1 ; (skip÷b2 ; a3÷b3)

skip÷b1 ; (skip÷b2 ; a3÷b3)
a3 ⟨⟨skip÷b3 , b2⟩, b1⟩

No rule exists in the before
semantics

An Operational Semantics for Model Checking Long Running Transactions 7

For the basic processes skipp, throww and yieldd, their forward processes are
skip, throw and yield, respectively; their compensation processes are all skip.

We need to record and compose the compensation process when executing
the forward process of a compensable process. Therefore, we introduce nested

configuration to define the semantics of composite compensable processes. A
nested configuration is hC,P i, where C is a nested configuration or a compens-
able process PP , and P is a standard process. C is current forward behavior that
is not terminated, and P is the current compensation process. For the sake of
brevity, in the following of this paper, we use PP or QQ to denote both com-
pensable processes and nested configurations. In addition, same as the semantic
definitions of standard processes, we also use PP

0 or QQ

0 to denote the process
or configuration after evolving.

Nested configuration. If the forward behavior can perform a non-terminal
event, then the nested configuration can also be transferred by performing the
event; otherwise, if the forward behavior can evolve to a standard process, the
nested configuration composes the resulting processes with the current compen-
sation process in a reversed order, which implements the backward recovery
mechanism in LRTs.

QQ

e�! QQ

0

hQQ,P i e�! hQQ

0
, P i

(e 2 ⌃

⌧)
QQ

!�! Q

hQQ,P i !�! Q;P
(! 2 ⌦)

It is necessary to point out that the evolving of a nested configuration will be
determined by its innermost nested configuration. For example, a÷ b

a�! skip÷ b

will make the nested configuration hha÷ b, ci, di evolve to hhskip÷ b, ci, di after
performing the event a, by applying the above first rule twice.

Sequential composition. A sequential composition PP ;QQ will perform a
non-terminal event if PP can perform it; if the forward process of PP terminates
non-successfully, QQ will be disregarded and the whole process will evolve to the
compensation process of PP .

PP

e�! PP

0

PP ;QQ

e�! PP

0;QQ

(e 2 ⌃

⌧)
PP

!�! P

PP ;QQ

!�! P

(! 2 {!, ?})

If the forward process of PP terminates successfully, the compensation process
will be recorded by a newly created nested configuration. If the second process
can evolve to its compensation process, the compensation processes of PP and
QQ will be composed in the reversed order to satisfy the requirement of backward
recovery.

PP

X�! P ^QQ

e�! QQ

0

PP ;QQ

e�! hQQ

0
, P i

(e 2 ⌃

⌧)
PP

X�! P ^QQ

!�! Q

PP ;QQ

!�! Q;P
(! 2 ⌦)

Internal and external choices. For an internal choice between PP and QQ,
the selection is nondeterministic, and the definition is similar to that of the
internal choice of standard processes.

b3 ; b2 ; b1
√

Operational Semantics
P ::= a | P ;P | P u P | P⇤P | P k

X
P | P \X | P JRK | P B P | [PP] |

skip | throw | yield | µ p.F (p)

PP ::= P÷P | PP ;PP | PP u PP | PP⇤PP | PP k
X

PP | PP ⇥ PP |

PP \X | PP JRK | skipp | throww | yieldd | µ pp.FF (pp)

Parallel Composition

8 Yu and Chen and Wang

PP uQQ

⌧�! PP PP uQQ

⌧�! QQ

An external choice can perform any event that can be performed by any of
its sub-processes, and can evolve to the standard process that any of the sub-
processes can evolve to.

PP

e�! PP

0

PP⇤QQ

e�! PP

0
(e 2 ⌃

⌧)
QQ

e�! QQ

0

PP⇤QQ

e�! QQ

0
(e 2 ⌃

⌧)

PP

!�! P

PP⇤QQ

!�! P

(! 2 ⌦)
QQ

!�! Q

PP⇤QQ

!�! Q

(! 2 ⌦)

Parallel composition. Any sub-process of PP k
X

QQ can perform a non-terminal

event independently if the event is not in the synchronization set X.

PP

e�! PP

0

PP k
X
QQ

e�! PP

0 k
X

QQ

(e 2 ⌃

⌧\X)
QQ

e�! QQ

0

PP k
X

QQ

e�! PP k
X

QQ

0
(e 2 ⌃

⌧\X)

On the other hand, PP and QQ need to synchronize on any event in X and the
terminal events, and the synchronization a↵ects both the forward behavior and
the compensation behavior.

PP

e�! PP

0 ^QQ

e�! QQ

0

PP k
X

QQ

e�! PP

0 k
X

QQ

0
(e 2 X)

PP

!1��! P ^QQ

!2��! Q

PP k
X

QQ

!1k!2����! P k
X

Q

(!1,!2 2 ⌦)

Hiding and renaming. Hiding and renaming operators a↵ect both the forward
and compensation processes of a compensable process. For the forward processes,
the rules are as follows, which are similar to those of standard processes.

PP

e�! PP

0

PP \X ⌧�! PP

0 \X
(e 2 X)

PP

e�! PP

0

PP \X e�! PP

0 \X
(e 2 ⌃

⌧ \X)

PP

e1�! PP

0 ^ (e1, e2) 2 ⇢

PP J⇢K e2�! PP

0J⇢K
PP

e�! PP

0 ^ @e1 2 ⌃• 2 (e, e1) 2 ⇢

PP J⇢K e�! PP

0J⇢K
(e 2 ⌃

⌧)

If a compensable process can evolve to its compensation process, the events
performed by the compensation process also need to be hidden or renamed.

PP

!�! P

PP \X !�! P \X
(! 2 ⌦)

PP

!�! P

PP J⇢K !�! P J⇢K
(! 2 ⌦)

Speculative choice. PP ⇥QQ is the speculative choice between two compens-
able processes, it behaves like that PP and QQ run in parallel until one of them
succeeds, then the other one will be compensated. Thus, we give the rules for
the parallelism in forward behavior first.

PP

e�! PP

0

PP ⇥QQ

e�! PP

0 ⇥QQ

(e 2 ⌃

⌧)
QQ

e�! QQ

0

PP ⇥QQ

e�! PP ⇥QQ

0
(e 2 ⌃

⌧)

(a1÷b1||a2÷b2)
{a1,a2}

deadlock
Example

Operational Semantics
P ::= a | P ;P | P u P | P⇤P | P k

X
P | P \X | P JRK | P B P | [PP] |

skip | throw | yield | µ p.F (p)

PP ::= P÷P | PP ;PP | PP u PP | PP⇤PP | PP k
X

PP | PP ⇥ PP |

PP \X | PP JRK | skipp | throww | yieldd | µ pp.FF (pp)

Parallel Composition

8 Yu and Chen and Wang

PP uQQ

⌧�! PP PP uQQ

⌧�! QQ

An external choice can perform any event that can be performed by any of
its sub-processes, and can evolve to the standard process that any of the sub-
processes can evolve to.

PP

e�! PP

0

PP⇤QQ

e�! PP

0
(e 2 ⌃

⌧)
QQ

e�! QQ

0

PP⇤QQ

e�! QQ

0
(e 2 ⌃

⌧)

PP

!�! P

PP⇤QQ

!�! P

(! 2 ⌦)
QQ

!�! Q

PP⇤QQ

!�! Q

(! 2 ⌦)

Parallel composition. Any sub-process of PP k
X

QQ can perform a non-terminal

event independently if the event is not in the synchronization set X.

PP

e�! PP

0

PP k
X
QQ

e�! PP

0 k
X

QQ

(e 2 ⌃

⌧\X)
QQ

e�! QQ

0

PP k
X

QQ

e�! PP k
X

QQ

0
(e 2 ⌃

⌧\X)

On the other hand, PP and QQ need to synchronize on any event in X and the
terminal events, and the synchronization a↵ects both the forward behavior and
the compensation behavior.

PP

e�! PP

0 ^QQ

e�! QQ

0

PP k
X

QQ

e�! PP

0 k
X

QQ

0
(e 2 X)

PP

!1��! P ^QQ

!2��! Q

PP k
X

QQ

!1k!2����! P k
X

Q

(!1,!2 2 ⌦)

Hiding and renaming. Hiding and renaming operators a↵ect both the forward
and compensation processes of a compensable process. For the forward processes,
the rules are as follows, which are similar to those of standard processes.

PP

e�! PP

0

PP \X ⌧�! PP

0 \X
(e 2 X)

PP

e�! PP

0

PP \X e�! PP

0 \X
(e 2 ⌃

⌧ \X)

PP

e1�! PP

0 ^ (e1, e2) 2 ⇢

PP J⇢K e2�! PP

0J⇢K
PP

e�! PP

0 ^ @e1 2 ⌃• 2 (e, e1) 2 ⇢

PP J⇢K e�! PP

0J⇢K
(e 2 ⌃

⌧)

If a compensable process can evolve to its compensation process, the events
performed by the compensation process also need to be hidden or renamed.

PP

!�! P

PP \X !�! P \X
(! 2 ⌦)

PP

!�! P

PP J⇢K !�! P J⇢K
(! 2 ⌦)

Speculative choice. PP ⇥QQ is the speculative choice between two compens-
able processes, it behaves like that PP and QQ run in parallel until one of them
succeeds, then the other one will be compensated. Thus, we give the rules for
the parallelism in forward behavior first.

PP

e�! PP

0

PP ⇥QQ

e�! PP

0 ⇥QQ

(e 2 ⌃

⌧)
QQ

e�! QQ

0

PP ⇥QQ

e�! PP ⇥QQ

0
(e 2 ⌃

⌧)

(a1÷b1||a1÷b2)
{a1,a2}

Example
a1 (skip÷b1||skip÷b2)

{a1,a2}

√ b1||b2
{a1,a2}

Correspondence with FD Semantics

• A method for deriving FD semantics from
operational semantics

• Inspired by the method for CSP

Theorem 1
For a standard process P, the derived model according
to the operational semantics is equal to the FD model
of P.

Basic idea of proof: induce the structures of processes

Correspondence with FD Semantics

• A method for deriving FD semantics from
operational semantics

• Inspired by the method for CSP

Theorem 2
For a compensable process PP, the derived model
according to the operational semantics is equal to the
FD model of PP.

Model Checking Problem

• General model checking problem with
respect to regular properties

Theorem 3
Given a standard process P of the extended cCSP and
an FSM R, the language inclusion problem L(T(P))⊆L(R)
is undecidable.

Basic idea of proof: reduction from the halting problem of
Minsky 2-counter machine

Tool Implementation

• Built on Process Analysis Toolkit (PAT)

• Extended cCSP parser

• Operational semantics Implementation

• Features

• Modeling environment, animating

• LTL model checking

• Refinement checking (only standard process)

Tool Screenshots

http://rcos.iist.unu.edu/~zbchen/LRT.html

http://rcos.iist.unu.edu/~zbchen/LRT.html
http://rcos.iist.unu.edu/~zbchen/LRT.html

Conclusion

• An operational semantics for extended cCSP

• Correspondence with FD semantics

• Model checking problem discussion

• A tool for modeling and verifying LRTs

• Animating, LTL model checking

• Refinement checking

Next Step

• Refinement checking of compensable processes

• Model checking Algorithms

• Applications

• Business process verification: BPMN

• Service orchestration verification: WS-BPEL

• Recovery-oriented Computing

End
Thank you!

