

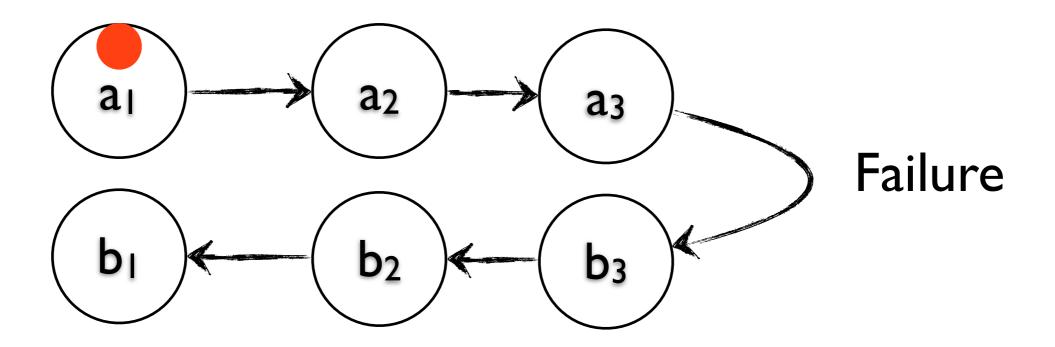
An Operational Semantics for Model Checking Long Running Transactions

Hengbiao Yu, <u>Zhenbang Chen</u>, Ji Wang zbchen@nudt.edu.cn

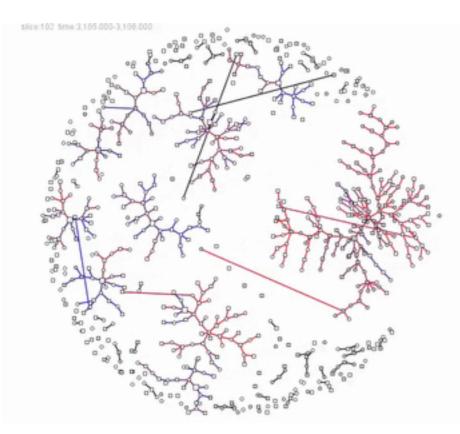
School of Computer, National University of Defense Technology, Changsha, China National Laboratory for Parallel and Distributed Processing, Changsha, China

Long Running Transactions

- Database
 - Long-lived transactions
 - ACID transactions
- SAGAS
 - 1987, SIGMOD
- Compensation



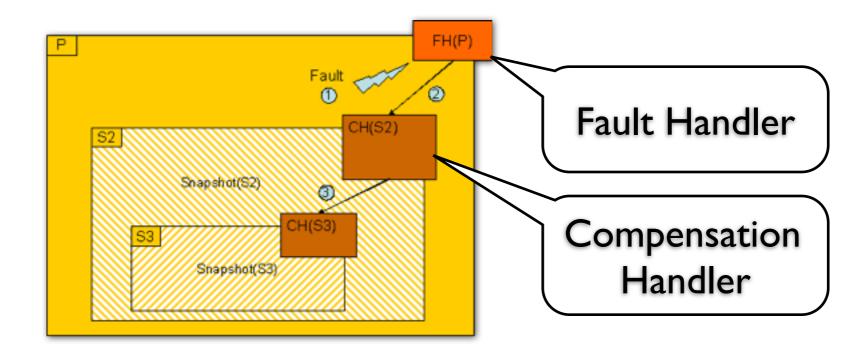
Compensation


Compensation-based LRTs

- An activity has its compensation activity
- Use compensations in case of failures
- A relaxed atomicity and consistency

Service-Oriented Computing

- Services are world wide distributed
- Coordinate to accomplish a task
 - Highly dynamic, not stable



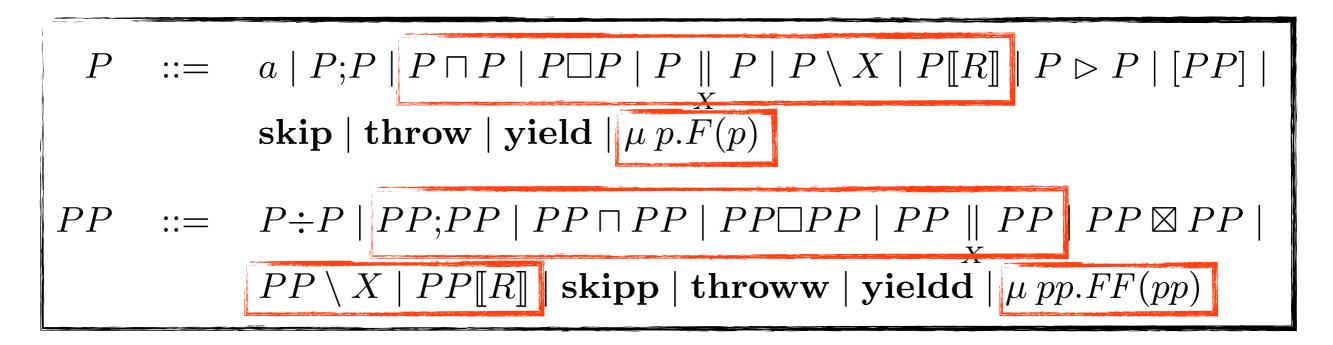
How to ensure consistency in case of a failure?

Long running transactions

Compensation-based Programming in SOC

- Industrial service orchestration languages
 - Compensation based fault handling
 - Very flexible recovery mechanisms

WS-BPEL 2.0, OASIS Standard, I I April 2007

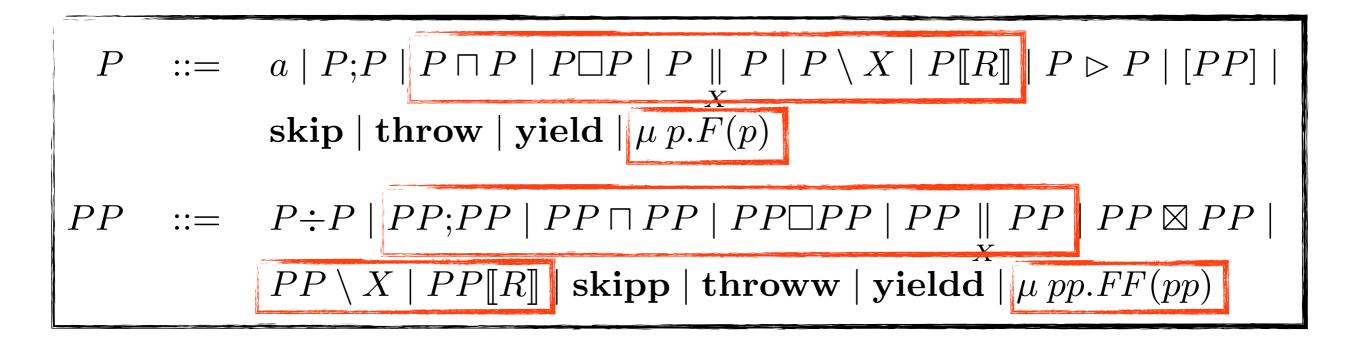

Compensation-based Programming in SOC

- Industrial service orchestration languages
 - Compensation based fault handling
 - Very flexible recovery mechanisms
- Formal Languages
 - cCSP, StAC, SAGAs Calculi, etc.
 - Theoretical foundations

Compensating CSP

- A CSP variant for modeling LRTs
 - Proposed by Butler et al., 2005
- Two types of processes
 - Standard & Compensable
- Composition operators
 - Choice, sequence, interleaving, etc.

Extended cCSP



Enabling the modeling of non-determinism, deadlock and livelock

• Stable-failures semantics

Zhenbang Chen and Zhiming Liu. An Extended cCSP with Stable Failures Semantics. 7th International Colloquium on Theoretical Aspects of Computing (ICTAC'10), LNCS 6255, 2010.

Extended cCSP

• Failure-divergence semantics, refinement

Zhenbang Chen, Zhiming Liu and Ji Wang. Failure-Divergence Refinement of Compensating Communicating Processes. 17th International Symposium on Formal Methods (FM'11), LNCS 6664, 2011.

Zhenbang Chen, Zhiming Liu and Ji Wang. Failure-Divergence Semantics and Refinement of Long Running Transactions. *Theoretical Computer Science* (TCS), Vol 455, pp:31-65, 2012

Current Issue

- No operational semantics for extended cCSP
 - There is one for cCSP
- No tool support for modeling and verification
 - Animating
 - Model checking
 - ...

What we have done in this paper

- An operational semantics for the extended cCSP
- Model checking problem w.r.t. regular properties
- A prototype tool built on PAT
 - Modeling, animating and model checking

- $P ::= a \mid P; P \mid P \sqcap P \mid P \square P \mid P \mid P \setminus X \mid P[[R]] \mid P \triangleright P \mid [PP] \mid$ $skip \mid throw \mid yield \mid \mu p.F(p)$
- $PP ::= P \div P \mid PP; PP \mid PP \sqcap PP \mid PP \square PP \mid PP \mid PP \mid PP \boxtimes PP \mid PP \boxtimes PP \mid PP \boxtimes PP \mid PP \mid$

Compensation Pair

 $\frac{P \xrightarrow{e} P'}{P \div Q \xrightarrow{e} P' \div Q} (e \in \Sigma^{\tau}) \qquad \frac{P \xrightarrow{\checkmark} 0}{P \div Q \xrightarrow{\checkmark} Q} \qquad \frac{P \xrightarrow{\omega} 0}{P \div Q \xrightarrow{\omega} \text{skip}} (\omega \in \{!, ?\})$ Example $a_1 \div b_1 \xrightarrow{a_1} \text{skip} \div b_1 \xrightarrow{\checkmark} b_1$

- $P ::= a | P;P | P \sqcap P | P \square P | P | P | P \setminus X | P[[R]] | P \triangleright P | [PP] |$ $skip | throw | yield | \mu p.F(p)$
- $PP ::= P \div P \mid PP; PP \mid PP \sqcap PP \mid PP \square PP \mid PP \mid PP \mid PP \boxtimes PP \mid PP \boxtimes PP \mid PP \boxtimes PP \mid PP \setminus X \mid PP[\![R]\!] \mid \mathbf{skipp} \mid \mathbf{throww} \mid \mathbf{yieldd} \mid \mu \ pp.FF(pp)$

Sequential Composition	on	Example	$a_1 \div b_1; a_2 \div b_2$
$\frac{PP \xrightarrow{\checkmark} P \land QQ \xrightarrow{e} QQ'}{PP; QQ \xrightarrow{e} \langle QQ', P \rangle}$	$(e \in \Sigma^{\tau})$		↓a ₁
$PP; QQ \rightarrow \langle QQ', P \rangle$			skip÷b1 ; a2÷b2
$\frac{PP \xrightarrow{\checkmark} P \land QQ \xrightarrow{\omega} Q}{PP; QQ \xrightarrow{\omega} Q; P}$	$(\omega \in \Omega)$		$\langle skip \div b_2, b_1 \rangle$

- $P \quad ::= \quad a \mid P; P \mid P \sqcap P \mid P \sqcap P \mid P \mid P \setminus X \mid P[\![R]\!] \mid P \triangleright P \mid [PP] \mid$ $\mathbf{skip} \mid \mathbf{throw} \mid \mathbf{yield} \mid \mu \ p.F(p)$

Nested Configuration

$$\frac{QQ \xrightarrow{e} QQ'}{\langle QQ, P \rangle \xrightarrow{e} \langle QQ', P \rangle} \quad (e \in \Sigma^{\tau}) \qquad \frac{QQ \xrightarrow{\omega} Q}{\langle QQ, P \rangle \xrightarrow{\omega} Q; P} \quad (\omega \in \Omega)$$

Example

 $a_1 \div b_1; a_2 \div b_2 \xrightarrow{a_1} \text{skip} \div b_1; a_2 \div b_2 \xrightarrow{a_2} \langle \text{skip} \div b_2, b_1 \rangle \xrightarrow{\sqrt{}} b_2; b_1$

 $P ::= a \mid P; P \mid P \sqcap P \mid P \square P \mid P \mid P \setminus X \mid P[[R]] \mid P \triangleright P \mid [PP] \mid$ $\mathbf{skip} \mid \mathbf{throw} \mid \mathbf{yield} \mid \mu \ p.F(p)$

 $PP ::= P \div P \mid PP; PP \mid PP \sqcap PP \mid PP \square PP \mid PP \mid PP \mid PP \boxtimes PP \mid PP \boxtimes PP \mid PP \boxtimes PP \mid PP \setminus X \mid PP[\![R]\!] \mid \mathbf{skipp} \mid \mathbf{throww} \mid \mathbf{yieldd} \mid \mu pp.FF(pp)$

Configuration Discussion $\frac{PP \xrightarrow{\checkmark} P \land QQ \xrightarrow{e} QQ'}{PP; QQ \xrightarrow{e} \langle QQ', P \rangle} \quad (e \in \Sigma^{\tau})$

 $a_1 \div b_1$; (skip $\div b_2$; $a_3 \div b_3$) $\xrightarrow{a_1}$ skip $\div b_1$; (skip $\div b_2$; $a_3 \div b_3$)

skip÷ b_2 ; a_3 ÷ b_3 $\xrightarrow{a_3}$ \langle skip÷ b_3 , $b_2 \rangle$ No rule exists in the before semantics

skip÷ b_1 ; (skip÷ b_2 ; a_3 ÷ b_3) $\xrightarrow{a_3}$ ((skip÷ b_3 , b_2), b_1) $\xrightarrow{\sqrt{}}$ b_3 ; b_2 ; b_1

- $P ::= a \mid P; P \mid P \sqcap P \mid P \square P \mid P \mid P \setminus X \mid P[R] \mid P \triangleright P \mid [PP] \mid$ $skip \mid throw \mid yield \mid \mu p.F(p)$
- $PP ::= P \div P \mid PP; PP \mid PP \sqcap PP \mid PP \square PP \mid PP \mid PP \mid PP \boxtimes PP \mid PP \boxtimes PP \mid PP \boxtimes PP \mid PP \mid$

Parallel Composition

$$\begin{bmatrix} \frac{PP \stackrel{e}{\rightarrow} PP' \land QQ \stackrel{e}{\rightarrow} QQ'}{PP \parallel QQ \stackrel{e}{\rightarrow} PP' \parallel QQ'} (e \in X) & \frac{PP \stackrel{\omega_1}{\rightarrow} P \land QQ \stackrel{\omega_2}{\rightarrow} Q}{PP \parallel QQ \stackrel{\omega_1 \parallel \omega_2}{\rightarrow} P \parallel Q} (\omega_1, \omega_2 \in \Omega) \\ \end{bmatrix}$$

Example
$$(a_1 \div b_1 || a_2 \div b_2) \quad \text{deadlock}$$

- $P ::= a \mid P; P \mid P \sqcap P \mid P \square P \mid P \mid P \setminus X \mid P[[R]] \mid P \triangleright P \mid [PP] \mid$ $\mathbf{skip} \mid \mathbf{throw} \mid \mathbf{yield} \mid \mu \ p.F(p)$
- $PP ::= P \div P \mid PP; PP \mid PP \sqcap PP \mid PP \square PP \mid PP \mid PP \mid PP \boxtimes PP \mid PP \boxtimes PP \mid PP \boxtimes PP \mid PP \mid$

Parallel Composition

$$\frac{PP \xrightarrow{e} PP' \land QQ \xrightarrow{e} QQ'}{PP \underset{X}{\parallel} QQ \xrightarrow{e} PP' \underset{X}{\parallel} QQ'} (e \in X) \quad \frac{PP \xrightarrow{\omega_1} P \land QQ \xrightarrow{\omega_2} Q}{PP \underset{X}{\parallel} QQ \xrightarrow{\omega_1 \parallel \omega_2} P \underset{X}{\parallel} Q} (\omega_1, \omega_2 \in \Omega)$$

Example

$$(a_1 \div b_1 || a_1 \div b_2) \xrightarrow{a_1} (skip \div b_1 || skip \div b_2) \xrightarrow{\sqrt{}} b_1 || b_2 \\ {a_1, a_2}$$

1

Correspondence with FD Semantics

- A method for deriving FD semantics from operational semantics
 - Inspired by the method for CSP

Theorem I

For a standard process *P*, the derived model according to the operational semantics is equal to the FD model of P.

Basic idea of proof: induce the structures of processes

Correspondence with FD Semantics

- A method for deriving FD semantics from operational semantics
 - Inspired by the method for CSP

Theorem 2

For a compensable process *PP*, the derived model according to the operational semantics is equal to the FD model of *PP*.

Model Checking Problem

General model checking problem with respect to regular properties

Theorem 3

Given a standard process P of the extended cCSP and an FSM R, the language inclusion problem $L(T(P)) \subseteq L(R)$ is undecidable.

Basic idea of proof: reduction from the halting problem of Minsky 2-counter machine

Tool Implementation

- Built on Process Analysis Toolkit (PAT)
 - Extended cCSP parser
 - Operational semantics Implementation
- Features
 - Modeling environment, animating
 - LTL model checking
 - Refinement checking (only standard process)

Tool Screenshots

<u>Ω</u> P/	dasd	lasdasd (Debug Model)	- TravelAgency.ccsp					_		- 0	x	
File		Verifier (Debug Model) - TravelAgency.ccsp						InteractionPane StatePane				
10		Assertions										
Sp	State								InteractionPanel #			
/ +CSP	State I	2 GRP() = []() harCar II abbin)							EnabledEvents			
1	The pro Stop	3 GBP() = [](! noCar U sendConfirm)							Enabled Event			
2	5.00	⑦ 4 CarHO divergencefree										
2	The en	e en 5 PCar () refines (FD) Car ()										
23	Variable carAva											
4	CalAva	CarAva 7 GBP() = [](cancelAir R letter)										
3		(?) 8 GBP() = [](agree R ! result)				-					
3				III			abil.					
3		The selected assertion	n									
34		GBP() = [](cancelAir R letter)								1		
3						Event Trace						
31				Verification	Büchi_automata	Simulation		Source	Event	Target	-	
3		Options						0	init	1		
3		Admissible Behavior Verification Engine	- Time threshold	;	1	regTravel	2					
			First Witness Trace using Dent	First Witness Trace using Depth First Search - Generate Witness Trace		2	checkCredit	3				
4		Output	The states in the state pope	n mat beat ch	ven	erece richess frace	-	3	bookAir	4	E	
4		******Verification Res	F. +++++++				-	4	[int_choice]	5		
4			cancelAir R ! letter)) is NOT valid.						[int_choice]	6		
	A counterexample is presented as follows. (init -> reqTravel -> checkCredit -> reqCar -> bookAir -> reqHotel -> [int_choice] -> inValid -> [int_choice] -> hasCar -> [int_choice] -> noAir -> [int_choice] -> noRoom -> DataOperation -> CCSPTAU -> cancelCar -> letter>							6	valid	7		
								7	reqCar	8		
4								8	[int_choice]	9		
4	Admissible Behavior: All Method: Refinement Based Safety Analysis using DFS - The LTL formula is a safety property! System Abstraction: False							9	reqHotel	10		
54							=	10	payment	11		
P								11	[int_choice]	12		
L C								12	[int_choice]	13		
4		Visited States:17						13	noRoom	14		
-	1	Total Transitions:90						1.4	hadfar	15	-	
Outp	生成图	Time Used:0.1070332s					101					
Gran	imar cried	Estimated Memory Used:88	75.92KB				-					
		Complete verification										

http://rcos.iist.unu.edu/~zbchen/LRT.html

Conclusion

- An operational semantics for extended cCSP
 - Correspondence with FD semantics
- Model checking problem discussion
- A tool for modeling and verifying LRTs
 - Animating, LTL model checking
 - Refinement checking

Next Step

- Refinement checking of compensable processes
- Model checking Algorithms
- Applications
 - Business process verification: BPMN
 - Service orchestration verification:WS-BPEL
 - Recovery-oriented Computing

End Thank you!